

Preserving Software:

Motivations, Challenges

and Approaches

Sheila M. Morrissey

http://doi.org/10.7207/twgn20-02

DPC Technology Watch

Guidance Note

August 2020

© Digital Preservation Coalition 2020 and Sheila Morrissey 2020

ISSN: 2048-7916

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,

without prior permission in writing from the publisher. The moral rights of the author have been asserted.

First published in Great Britain in 2020 by the Digital Preservation Coalition.

1

1 Why preserve software?
We care about preserving software both for its own sake, and because preserved software is a vitally

important means of preservation – possibly the only means we might have to access other sorts of

digital artefacts in the future.

We preserve software to study techniques of creating it, the purposes to which it was put, and the

conceptual, physical, social, and political systems within which it is created and executed

(Ensmenger 2009). We inspect software, re-run it, re-write and re-configure it for many purposes: to

make transparent its effect on us, to adapt it to new use, to ensure the reproducibility and integrity

of research.

As a means of preservation of other objects, preserved software mediates the experience of all sorts

of ‘digital-native’ artefacts: fine art, multi-media, hyper-linked ‘books’, single- and multi-player video

games (Chue Hong 2019). Sometimes we access these artefacts via obsolescent software because

we are scholars investigating the ‘original experience’ of these mediated artefacts. Increasingly, we

are accessing them this way because it is the only experience we can have of these artefacts

(Cochrane 2012; Morrissey 2010).

2 What are the technical challenges of preserving software?
Whether or not software is eating the world, it could well be said to be eating itself. Software, if not

by intention the product of ‘planned obsolescence,’ is certainly the very epitome of ‘born

obsolescent.’ Since its earliest days as a profession, software engineering has ‘theorized’ what is

called the software life cycle. It has articulated laws of program evolution (including a Law of

Continuing Change (Lehman 1980)) and the phases of that cycle, culminating in complete

replacement at best; and, at worst, in abandonment. (Chapin at al., 2001; IEEE Standards Association

2006)

Further, both hardware and software are conceptualized, built, and executed in vertical ‘layers’ of

increasing abstraction, as well as horizontal ‘modules’ of specialized functions and capabilities, with

a myriad of interactions, up and down these layers, and back and forth across these components.

These conceptual layers and modules are themselves subdivided into interacting layers and

modules.

Then, at different times, components at each layer are swapped out for new ones – to fix a bug,

perhaps, or to add new capabilities, or to make the component compatible with a change made in

some other component that has been modified. Sometimes, other components at the same or

higher or lower levels as these new ones ‘break.’ They cease to function, or function differently.

When we try to reassemble these execution stacks years later, it is often difficult, if not impossible,

to analyse and repair the cause of breakage (Dick and Volmar. 2018).

2

Details of configuration – parameters passed at runtime to an executable – are another artefact

difficult to capture, anatomize, reproduce, or understand. This could be anything from settings in a

configuration file on a local system, to personalization information stored on, and applied from, a

remote server to a cell-phone or other application.

We face analogous complexities in saving source code. Source code is the text-file-based, human-

readable code in which software is now almost entirely written. It is then translated via yet more

software (a compiler) into the low-level (‘machine’) code, executed by a computer. We will want

access to source code in the future for many of the same reasons we will want effective access to

executable software. This means assuring preservation of correctly versioned compilers, along with

appropriate software and hardware stacks. Even then, we face the problem of understanding, not

just the syntax of the programming language used, but the larger coding idioms employed to

organize code and communicate its organization and capabilities to human readers (Matthews et al.,

2009; Morrissey 2010).

3 What are the legal challenges of preserving software?
There is virtually no software, including free/libre and open source software (FLOSS), that does not

fall under one or another regime, national or supranational, of intellectual property (IP) law

(Charlesworth 2012). Anyone preserving software and making that preserved artefact accessible for

inspection or use must grapple with issues of license and copyright, sometime with conflicting

imperatives from national or international law (Charlesworth 2012). It is, at best, unclear whether

‘fair dealing’ (in the UK) or ‘fair use’ (in the USA), would avert legal entanglements for institutions

preserving software, even with such provision as is made for non-commercial research or private

study (ARL 2018; Charlesworth 2012).

It is not clear what legal restrictions exist, under different legal IP regimes, on the text mining of

source code repositories. Nor is it clear that software preserved for the purpose of rendering other

preserved digital artefacts, even if legally obtained and preserved, could legally be used to provide

such access.

As with books and other published material, software suffers from an ‘orphan works’ problem. Even

with the best will in the world to conform with licenses and IP law, it might not be possible to

establish the rights holder of a piece of software (Charlesworth 2012).

Further, preserving software often means grappling with the technological enforcement of digital

rights management (DRM). The process of installing older software might include validation via a

license key. Even if the conservator has the key, the validating service might no longer be in

existence – and the software could be rendered unusable (ARL 2018; Charlesworth 2012). The Digital

Millennium Copyright Act (DMCA) in the US, for example, prohibits any tampering with DRM

technology.

4 What are the curatorial challenges of preserving software?
The first challenge of software curation is to determine, in light of one’s own institutional mission,

the ‘what’ of software curation. What is the focus of your curatorial activities? Candidates include

the systematic collection of general-purpose systems, such as older operating systems; software and

hardware of historical interest; digital-native artefacts of cultural or social significance (such as time-

based media, digital arts, computer games); and source code, especially (but not exclusively)

software used in scholarly research (Bearman 1987; Chassanoff et al., 2018).

3

Then there are the challenges of the ‘how.’ There is risk management, including taking proper care

of any software containing sensitive or protected content, or that falls under the rubric of national

security issues (Charlesworth 2012). As mentioned above, there are the risks associated with license

and other IP constraints, including the necessity to determine any limitations on access to preserved

software that might be required to conform to IP or other restrictions. There is the possibility of

malicious code, including computer viruses, embedded in an acquisition, which could contaminate or

damage a collection (Rosenthal 2015).

To be useful, curated software must be discoverable. How do we describe software effectively? The

list of properties to be described will vary according to the purposes for which we collect software.

These properties might include details of the software stack needed to be able to run it;

bibliographic information and persistent identification for citation; key descriptive information about

algorithms or languages employed. (Bettivia 2016; Katz et al., 2019; McDonough 2010; Smith et al.,

2016) As yet, there is no single ontology or metadata vocabulary for software description, or indeed

agreed-upon taxonomies for these and other possible sets of criteria.

Whether we are studying software as an artefact of interest or are collecting it as a means of access

to other artefacts, contextual information and materials are crucially important both for

understanding and for executing it. There are many possible candidates for the contextual material

and information we should collect with the software, including material aspects (such as distribution

media); user guides; reference manuals; postings to old listservs and electronic boards; and original

hardware on which the software ran. Possible approaches to preserving context include

documenting what a running program ‘looks like,’ using screen shots, videos, or automated session

recorders, and noting what the operation of the program ‘takes for granted’ – including gestures

such as swiping, or the use of auxiliary devices such as keyboards and mice (Bettivia 2016; Cranmer

2017; Depocas et al., 2003; Newman 2011).

As is perennially true for digital preservation, software preservation is still largely an unfunded

mandate.

5 What are people doing now to preserve software?

Approaches to Technical Challenges
Just as Moliere’s bourgeois gentilhomme had been speaking prose for over forty years while

knowing nothing of it, so software engineers the world over have been practising software

preservation for over half a century – having done so under the rubric of software maintenance.

Notably, these ‘maintainers’ have succeeded in the prosaic task of keeping key government and

financial systems running. The preservation community has this experience, and the scholarly

literature created around it, to draw upon.

In business and government, this very old software typically does not run on original hardware.

However, keeping software running as created, on original hardware, is the preservation approach

taken by some institutions. These include the National Museum of Computing in the UK, and the

Computer History Museum and the Living Computers Museum + Labs in the US.

Also from the commercial world, and enriched by the community of computer gaming enthusiasts,

comes a crucial digital preservation strategy: emulation. Emulation is the use of software to mimic

the behaviour (the ‘instruction set’) of one type of computer hardware while running an application

on different computer hardware, with a different instruction set, to recreate, as closely as possible,

the behaviour of the original hardware/software stack (Rosenthal 2015).

4

Emulation was proposed as a preservation strategy by Jeff Rothenberg in 1995 (Rothenberg 1995). A

number of individuals and institutions have applied both general-purpose and purpose-built

emulators to the challenge of digital preservation, including CAMiLEON1, KB Dioscuri2, the EU’s KEEP

Emulation Framework project (Anderson et al., 2010), and Internet Archive’s software collection3.

A key project in the application of emulation to preservation is the University of Freiburg’s DPC

award winning bwFLA4. bwFLA delivers emulation as a web service. It has been used, for example, by

Rhizome to deliver some of the born-digital artworks in its collection. Also based on bwFLA is the

current EaaSI (Emulation as a Service Infrastructure) project5, which is building both a community

and a shared infrastructure for capturing, storing, cataloguing, and serving up emulated software

stacks (Cochrane 2019).

There are some challenges in employing emulation as a preservation solution. It is technically

challenging to create an executable ‘image’ of the software stack to be run over the emulator. And

the emulators, being themselves software, will themselves have to be maintained, so that they will

continue to be usable as the hardware and software they run on continues to evolve.

Container technology is similar to emulators, though more lightweight. A preserved software image

and its software dependencies are stored together as a ‘container’ and run on the same host

operating system and hardware instruction set used by software when it was created. Container

technology is the basis of such tools as ReproZip and commercial service Code Ocean, which aim to

capture the stack of software dependencies used in running an instance of software developed in

connection with scholarly research. Containers are however less robust over the very long term from

a preservation point of view, as they depend on the continued availability of the original operating

system and hardware instruction set. (Boettiger 2015; Emsley and DeRuore 2017)

The not-for-profit Software Heritage (SH) has undertaken to collect, preserve, and share the source

code of all publicly available software (Di Cosmo and Zacchiroli 2017). Using both automated and

manual methods, SH harvests source code from the public repositories currently or previously used

by developers, such as GitHub, BitBucket, Debian, Google Code, and GNU.

Cern, as a participant in the EU-funded, open-access/open-data OpenAIRE project, established the

Zenodo repository. Among the digital research artefacts it is intended to preserve is software source

code. To that end, Zenodo has developed a software tool that automates the creation of a Digital

Object Identifier (DOI) for software that developers store on the GitHub’s commercial source code

repository, and the replication of that software to Zenodo for long-term preservation.

Approaches to Legal Challenges
While some technical approaches to preserving software are promising results, the legal challenges

are proving more stubbornly resistant to solution.

The principle of fair use has made for some leeway in the US, where a successful petition by the

Software Preservation Network (SPN), Harvard University's CyberLaw Clinic, the American Library

Association (ALA), the Association of Research Libraries (ARL), and the Association of College and

Research Libraries (ACRL) to the US Copyright Office resulted in a three-year exemption from DMCA

1 https://web.archive.org/web/20060909234230/http://www.si.umich.edu/CAMILEON/index.html
2 https://web.archive.org/web/20091227142651/http://dioscuri.sourceforge.net/
3 https://archive.org/details/software
4 http://eaas.uni-freiburg.de/
5 https://www.softwarepreservationnetwork.org/projects/emulation-as-a-service-infrastructure/

https://web.archive.org/web/20060909234230/http:/www.si.umich.edu/CAMILEON/index.html
https://web.archive.org/web/20091227142651/http:/dioscuri.sourceforge.net/
https://archive.org/details/software
http://eaas.uni-freiburg.de/
https://www.softwarepreservationnetwork.org/projects/emulation-as-a-service-infrastructure/

5

provisions against the circumvention of DRM technology for libraries, archives, and museums. SPN

has published guidelines for preservationists on the applicability of that exemption (Albert and Lee

2018), complementing the ‘Code of Best Practices in Fair Use for Software Preservation.’ (ARL 2018).

Fair use and the DMCA exemption are of course only applicable in the US. In the 2018 ‘Paris Call:

Software Source Code as Heritage for Sustainable Development’ issued by UNESCO, Inria, and

Software Heritage, the signatories noted the need to ‘ensure necessary exceptions to copyright and

limitations on intermediary liability related to software for archival preservation, accessibility,

education and research purposes.’6 Active efforts by SH and others resulted in an exclusion of

software source code from the copyright provisions of the EU Directive on Copyright in the Digital

Single Market.

Approaches to Curation Challenges
Collaborative effort is proving key both to raising awareness of the importance of software

preservation, as well as accomplishing some specific curatorial aims.

Software Heritage, along with Force-11 and the Research Data Alliance (RDA) Source Code Interest

Group, have worked jointly on developing identification schemas for source code. They, along with

Software Preservation Network, have provided both guidance and tools for software citation,

increasing the profile of research software. This work is reinforced by those in the research

community concerned with reproducibility of research results – efforts which include for example

formal software artefact review and badging for an increasing number of Special Interest Groups

(SIGS) and conferences of the Association for Computing Machinery (ACM) (Marquis et al., 2016).

Part of Software Heritage’s collection strategy is the harvesting of source code metadata available in

the configuration files of the various source code management (SCM) systems used by commercial

and other repositories. They have developed software to create metadata compliant with

CodeMeta. The CodeMeta project includes crosswalk tools from many of the most common SCM

vocabularies.7

Along with automated tools for gathering software metadata, museums and galleries have begun

collaborating with artists (both at the time of creation and at donation), to gather relevant

contextual information, including execution stack, intended rights constraints, and also information

about the intended affect of the art work (Cranmer et al., 2017; Depocas et al., 2003; Newman 2011;

Verbruggen 2018). The UK’s National Videogame Archive is preserving ‘walkthrough texts.’ These are

player-produced artefacts (typically plain text) that record techniques of proceeding through the

various possible paths of video games, as well as ways to experiment, for example by means of bugs

in the game software, with ways of forging new game paths and experiences (Newman 2011).

Libraries, museums, and archives have also begun talking directly with commercial software

vendors, not simply to obtain donations of software, but also, where necessary, to obtains releases

on existing license and copyright constraints.

6 References
Albert, Kendra and Lee, Kee Young. (2018) A Preservationists Guide to the DMCA Exemption for

Software Preservation. Software Preservation Network. Available at

6 https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=en
7 https://codemeta.github.io/

https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=en
https://codemeta.github.io/

6

https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-

for-software-preservation/.

Anderson, David, Delve, Janet, and Dan Pinchbeck. (2010) ‘Toward A Workable Emulation-Based

Preservation Strategy: Rationale and Technical Metadata.’ New Review of Information Networking,

15(2) 2, pp. 110-131. Available at

https://www.tandfonline.com/doi/abs/10.1080/13614576.2010.530132?src=recsys&journalCode=ri

nn20. DOI: 10.1080/13614576.2010.530132.

The Association of Research Libraries (ARL) (2018, rev 2019). Code of Best Practices in Fair Use for

Software Preservation. Available at https://www.arl.org/resources/code-of-best-practices-in-fair-

use-for-software-preservation/

Bearman, David. Collection Software: A New Challenge for Archives & Museums, Pittsburgh:

Archives & Museum Informatics, 1987. Available at

http://www.archimuse.com/publishing/bearman_col_soft.html

Bettivia, Rhiannon. (2016) ‘Where Does Significance Lie: Locating the Significant Properties of Video

Games in Preserving Virtual Worlds II Data.’ International Journal of Digital Curation, 11(1), pp. 17–

32. Available at http://dx.doi.org/10.2218/ijdc.v11i1.339. DOI: 10.2218/ijdc.v11i1.339.

Boettiger, Carl. ‘An introduction to Docker for reproducible research.’ (2015) SIGOPS Oper. Syst. Rev.

49(1), pp. 71-79. Preprint available at https://arxiv.org/abs/1410.0846. DOI:

10.1145/2723872.2723882

Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F. and Tan, W. (2001) ‘Types of software evolution and

software maintenance.’ J. Softw. Maint. Evol.: Res. Pract., 13(1), pp. 3-30. Available at

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.220. doi:10.1002/smr.220.

Charlesworth, Andrew. (2012) Intellectual Property Rights for Digital Preservation: DPC Technology

Watch Report 12-02. Available at http://dx.doi.org/10.7207/twr12-02. DOI:10.7207/twr12-02.

Chassanoff, Alexandra, Al Noamany, Yasmin, Thornton, Katherine, and John Borghi. (2018) ‘Software

Curation in Research Libraries: Practise and Promise.’ Journal of Librarianship and Scholarly

Communication, 6 (General Issue), eP2239. Available at http://doi.org/10.7710/2162-3309.2239.

DOI: 10.7710/2162-3309.2239.

Cochrane, Euan. (2012) Rendering Matters, Archives New Zealand. Available at

https://web.archive.org/web/20190122170515/http://archives.govt.nz/rendering-matters-report-

results-research-digital-object-rendering.

Cochrane, Euan, Rechert, Klaus, Anderson, Seth, Meyerson, Jessica, and Ethan Gates. (2019)

‘Towards a Universal Virtual Interactor (UVI) for Digital Objects.’ Proceedings of the 16th International

Conference on Digital Preservation iPRES 2019. Available at

https://ipres2019.org/static/pdf/iPres2019_paper_128.pdf. DOI:10.17605/OSF.IO/AZEWJ.

Cranmer, C. (2017) Preserving the emerging: virtual reality and 360-degree video, an internship

research report. Netherlands Institute for Sound and Vision. Available at

http://publications.beeldengeluid.nl/pub/584

Depocas A., Ippolito J., Jones C. (editors). (2003) “Permanence Through Change: The Variable Media

Approach.’ The Solomon R. Guggenheim Foundation, New York, and The Daniel Langlois Foundation

https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-for-software-preservation/
https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-for-software-preservation/
https://www.tandfonline.com/doi/abs/10.1080/13614576.2010.530132?src=recsys&journalCode=rinn20
https://www.tandfonline.com/doi/abs/10.1080/13614576.2010.530132?src=recsys&journalCode=rinn20
https://www.arl.org/resources/code-of-best-practices-in-fair-use-for-software-preservation/
https://www.arl.org/resources/code-of-best-practices-in-fair-use-for-software-preservation/
http://www.archimuse.com/publishing/bearman_col_soft.html
http://dx.doi.org/10.2218/ijdc.v11i1.339
https://arxiv.org/abs/1410.0846
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.220
http://dx.doi.org/10.7207/twr12-02
http://doi.org/10.7710/2162-3309.2239
https://web.archive.org/web/20190122170515/http:/archives.govt.nz/rendering-matters-report-results-research-digital-object-rendering
https://web.archive.org/web/20190122170515/http:/archives.govt.nz/rendering-matters-report-results-research-digital-object-rendering
https://ipres2019.org/static/pdf/iPres2019_paper_128.pdf
http://publications.beeldengeluid.nl/pub/584

7

for Art, Science, and Technology, Montreal. Available at

https://variablemedia.net/e/preserving/html/var_pub_index.html.

Di Cosmo, Roberto, and Zacchiroli, Stefano. (2017) ‘Software Heritage: Why and How to Preserve

Software Source Code.’ Proceedings of iPRES 2017 - 14th International Conference on Digital

Preservation, Sep 2017, Kyoto, Japan., pp.1-10. Available https://ipres2017.jp/wp-

content/uploads/19Roberto-Di-Cosmo.pdf.

Dick, S. and D. Volmar. (2018) ‘DLL Hell: Software Dependencies, Failure, and the Maintenance of

Microsoft Windows.’ IEEE Annals of the History of Computing, 40(4), pp. 28-51. Available at

https://ieeexplore.ieee.org/document/8509170. DOI: 10.1109/MAHC.2018.2877913

Emsley, Iain and DeRuore, David. (2017) ‘A Framework for the Preservation of a Docker Container.’

International Journal of Digital Curation, 12(2), pp. 125-135. Available at

http://dx.doi.org/10.2218/ijdc.v12i2.509. DOI: 10.2218/ijdc.v12i2.509.

Ensmenger, N. (2009) ‘Software as History Embodied’ IEEE Annals of the History of Computing, 31(1),

pp. 88-91. Available at https://doi.ieeecomputersociety.org/10.1109/MAHC.2009.16. DOI

10.1109/MAHC.2009.16.

Chue Hong, Neil. (2019) ‘From shoeboxes to software preservation.’ Presentation at Insert Coin to

Continue: DPC Briefing Day on Software Preservation. 7th May 2019.

https://doi.org/10.6084/m9.figshare.8088290.

IEEE Standards Association. (2006) 14764-2006 - ISO/IEC/IEEE International Standard for Software

Engineering - Software Life Cycle Processes - Maintenance. Available at

https://standards.ieee.org/standard/14764-2006.html.

Katz DS, Bouquin D, Hong NPC, Hausman J, Jones C, Chivvis D, et al. (2019) "Software Citation

Implementation Challenges." Available at https://arxiv.org/abs/1905.08674.

Lehman, M. M. (1980) “On Understanding Laws, Evolution, and Conservation in the Large-Program

Life Cycle.” Journal of Systems and Software, 1, pp.213-221. Available at

https://doi.org/10.1016/0164-1212(79)90022-0.

Marquis, M., Hall, L., Hemami, S., Setti, G., Forster, M., Grenier, G., … Moore, K. (2016). Report on

the First IEEE Workshop on The Future of Research Curation and Research Reproducibility. Available

at

http://www.ieee.org/publications_standards/publications/ieee_workshops/ieee_reproducibility_wo

rkshop_report_final.pdf

Matthews, B., Shaon, A., Bicarregui, J., Jones, C., Woodcock, J., and Conway, E. (2009) ‘Towards a

Methodology for Software Preservation.’ Proceedings of 6th International Conference on

Preservation of Digital Objects (iPres 2009). Available at

https://escholarship.org/uc/item/8089m1v1.

McDonough, J., Olendorf, R., Kirschenbaum, M., Kraus, K., Reside, D., Donahue, R., Phelps, A., Egert,

C., Lowood, H., & Rojo, S. (2010). Preserving Virtual Worlds Final Report.

http://hdl.handle.net/2142/17097

Morrissey, Sheila. (2010) 'The Economy of Free and Open Source Software in the Preservation of

Digital Artifacts.' Library Hi Tech, 28(2), pp.211 – 223. Available at

https://doi.org/10.1108/07378831011047622. DOI:10.1108/07378831011047622.

https://variablemedia.net/e/preserving/html/var_pub_index.html
https://ipres2017.jp/wp-content/uploads/19Roberto-Di-Cosmo.pdf
https://ipres2017.jp/wp-content/uploads/19Roberto-Di-Cosmo.pdf
https://ieeexplore.ieee.org/document/8509170
http://dx.doi.org/10.2218/ijdc.v12i2.509
https://doi.ieeecomputersociety.org/10.1109/MAHC.2009.16
https://doi.org/10.6084/m9.figshare.8088290
https://standards.ieee.org/standard/14764-2006.html
https://arxiv.org/abs/1905.08674
https://doi.org/10.1016/0164-1212(79)90022-0
http://www.ieee.org/publications_standards/publications/ieee_workshops/ieee_reproducibility_workshop_report_final.pdf
http://www.ieee.org/publications_standards/publications/ieee_workshops/ieee_reproducibility_workshop_report_final.pdf
https://escholarship.org/uc/item/8089m1v1
http://hdl.handle.net/2142/17097
https://doi.org/10.1108/07378831011047622

8

Newman, James. (2011) ‘(NOT) Playing Games: Player-Produced Walkthroughs as Archival

Documents of Digital Gameplay’, International Journal of Digital Curation 6(2), pp. 109-127. Available

at: https://doi.org/10.2218/ijdc.v6i2.206. DOI: 10.2218/ijdc.v6i2.206.

Rieger, O.Y., Murray, T., Casad, M., Alexander, D., Dietrich, D., Kovari, J., Muller, L., Paolillo, M. &

Mericle, D.K. (2015) ‘Preserving and Emulating Digital Art Objects.’ Available at:

https://ecommons.cornell.edu/bitstream/handle/1813/41368/PAFDAOWhitePaperCornell.pdf?sequ

ence=5

Rosenthal, David S.H. (2015). ‘Emulation & Virtualization as Preservation Strategies.’ The Andrew W.

Mellon Foundation. Available at https://mellon.org/Rosenthal-Emulation-2015.

Rothenberg, Jeff. (1995) 'Ensuring the Longevity of Digital Documents.' Scientific American, 272(1).

Revision 1999, available at https://www.clir.org/wp-content/uploads/sites/6/ensuring.pdf

Smith, AM, Katz, DS, Niemeyer, KE & Chue Hong, N 2016, 'Software citation principles', PeerJ

Computer Science, vol. 2, no. 86. Available at https://doi.org/10.7717/peerj-cs.86. DOI:

10.7717/peerj-cs.86.

Verbruggen, Erwin. (2018) ‘Preserving Interactives.’ White Paper, Netherlands Institute for Sound

and Vision. Available at https://www.prestocentre.org/system/files/library/resource/14-

6_preservering_interactives_whitepaper_e_verbruggen_1.pdf.

https://doi.org/10.2218/ijdc.v6i2.206
https://ecommons.cornell.edu/bitstream/handle/1813/41368/PAFDAOWhitePaperCornell.pdf?sequence=5
https://ecommons.cornell.edu/bitstream/handle/1813/41368/PAFDAOWhitePaperCornell.pdf?sequence=5
https://mellon.org/Rosenthal-Emulation-2015
https://www.clir.org/wp-content/uploads/sites/6/ensuring.pdf
https://doi.org/10.7717/peerj-cs.86
https://www.prestocentre.org/system/files/library/resource/14-6_preservering_interactives_whitepaper_e_verbruggen_1.pdf
https://www.prestocentre.org/system/files/library/resource/14-6_preservering_interactives_whitepaper_e_verbruggen_1.pdf

