Digital Preservation and long term access: challenges, opportunities, approaches, tools

...and a couple of words about the DPC

William Kilbride
william@dpconline.org

www.dpconline.org
• What are the challenges?
• What are not?

• What is the solution?
• What is not?
Digital preservation typically makes bleak reading ...
• Let’s go back to first principles ...
• Digital data has value. It is an asset.
• It has potential and creates new opportunities.
• Use gives rise to direct and indirect outcomes.
• ...but...

• Deployment depends on software, hardware and people.
• Software, hardware and people change.
• ...therefore...

• Access is not guaranteed without (some) action
• Value, opportunity, impact not guaranteed
• Potential outcomes – ie health or research – lost
Digital preservation is not about ‘data’:
Digital preservation is not about ‘access’:
Digital preservation is not about ‘risk’:

it’s about people and opportunity
Digital preservation is not about ‘data’:
Digital preservation is not about ‘access’:
Digital preservation is not about ‘risk’:

Digital preservation is about:

Healthier - Wealthier
Safer - Smarter -
Greener

people and communities
Challenge 1

Access depends on the configuration of hardware and software and the capacity of the operator.

Documentation can capture these configurations

Emulation or Migration can create the conditions where access is possible.
Challenge 2

Technology continues to change creating the conditions for obsolescence.

Technology watch services can give advanced notice of obsolescence.

Plan for the long term early not late.

Self-preserving technology

www.dpconline.org
Challenge 3

Storage media have a short life and storage devices are subject to obsolescence.

Storage media can be refreshed and can self-check.

Storage densities continue to improve offering greater capacity at less cost.

(storage is cheap – discovery is expensive)

www.dpconline.org
Challenge 4

Digital preservation systems are subject to the same obsolescence as the objects they safeguard.

Systems can be modular and transparent.

Fitness for purpose can be monitored through time.

Recursion of process
Challenge 5

Digital resources can be altered, corrupted or deleted without obvious detection.

Signatures and wrappers can safeguard authenticity.

Security can control access.

Copies are perfect replicas with no degradation.

www.dpconline.org
Challenge 6

Digital resources are intolerant of gaps in preservation.

Ongoing risk management can provide monitoring.

There are significant economies of scale

Many processes can be automated.

www.dpconline.org
Challenge 7

The necessary skills are badly distributed.

That’s why we’re here...

Leadership
Training
Experience
Learning by doing
Key Approaches

1. Migration
Changing the format of a file to ensure the information content can be read

2. Emulation
Intervening in the operating system to ensure that old software can function so that information content can be rendered

3. Hardware preservation
Maintaining access to data and processes by maintaining the physical computing environment including hardware and peripherals.

4. Exhumation
Maintaining access to an execution environment or software services so that processes can be re-run with new data

www.dpconline.org
Three ways to think about Digital Preservation

1. A three legged stool
2. Digital lifecycles
3. Archival information systems
digital preservation

technology
organization
resources
Digital lifecycles

Think of a research question
Gather some relevant data
Process the data
Refine the data
Draw some conclusions
Publish your findings and data
Start again
Reference Model for an Open Archival Information System ‘OAIS’
Fig. 1. Major functions of the OAIS Reference Model from Consultative Committee for Space Data Systems (CCSDS), CCSDS 650.0-W-1, Producer-Archive Interface Methodology Abstract Standard (OAIS) White Book Issue 1, Draft Recommendation for Space Data System Standards.

Picture from DLib

www.dpconline.org
Consultative Committee for Space Data Systems

Inadvertently comparing yourself to NASA ...

Scalability? It scales up really well ...

www.dpconline.org
The reality?

You don’t need to understand or do all of this.

... and it doesn’t all have to exist at the same time.
some tools

Knowing what you’ve got
PRONOM+DROID
Planning what to do with it
PLATO
Putting it somewhere safe
LOCKSS
File Formats and Their Characteristics

The National Archives

Welcome to PRONOM

PRONOM changes and DROID signature file release notes.

The online registry of technical information, PRONOM is a registry of software products and other technical components that have historical or business value. Find out about the future of PRONOM.

Details for: Tagged Image File Format 3

Name: Tagged Image File Format

Version: 3

Other names: TIFF (3)

Identifiers:
- PUID: fnt/7
- MIME: image/tiff
- Apple Uniform Type Identifier: public.tiff

Family: Image (Raster)

Disclosure: Full

Description:
The Tagged Image File Format (TIFF) is a raster image format originally developed by the Aldus Corporation, primarily for use in scanning and desktop publishing. When Adobe Systems Incorporated purchased Aldus in 1994, they acquired the rights to the TIFF format and have maintained it since then. TIFF files comprise three sections: an Image File Header (IFH), an Image File Directory (IFD), and the image data. TIFF files can contain multiple images (multi-page TIFF), and an image has a separate IFD. The IFH always appears at the beginning of the file, and is immediately followed by a pointer to the first IFD. The IFD contains metadata which describes the associated image, stored as a series of tags. The IFD also contains a pointer to the actual image data. TIFF 3.0 supports colour depths from 1 bit to 24 bit (e.g. monochrome to true colour), and a range of compression types (BIF, and CCITT Group 3 and Group 4).
DROID: Search and report on files from an entire network

Identify files by extension
Identify files by contents
Report errors and concerns
Provides ‘checksum’ signatures

Part of a preservation architecture

http://www.nationalarchives.gov.uk/pronom/
PLATO – digital preservation planning tool

From the PLANETS suite of tools
Planning a shared function
Typically ad hoc

PLATO offers three things:
• Methodology for planning
• Online planning toolkit
• Library of plans

http://www ifs tuwien ac at/dp/plato/intro html
LOCKSS – Lots Of Copies Keeps Stuff Safe

Cooperative replication
Dark archive
Self-fixing

Originally E-journals for libraries
Post cancellation access

Now also ‘Private LOCKSS Networks’ Eg MetaArchive

Part of a preservation architecture

http://lockss.stanford.edu/
http://www.lockssalliance.ac.uk/
http://www.metaarchive.org/

Illustration courtesy of LOCKSS
PRONOM and DROID
PLATO
LOCKSS

= Parts of a preservation architecture

Not just at the end of the process but all the way through creation

Many more tools ...
Oh and ... the Digital Preservation Coalition

...to make our digital memory accessible tomorrow ...

Enabling Agenda-setting

www.dpconline.org
... first and foremost a coalition...

Shared challenge
Cross-sector
Cross-discipline
Policy and practice
... Enabling
DP Handbook
Email lists
Leadership Programme
What’s new
Workshops
Conferences
Technology watch reports
... agenda setting

Digital Britain
Archives for the 21st Century
Electronic Legal Deposit
Heritage Science Strategy
Preservation Exceptions

Web Archiving and
Preservation Task Force

www.dpconline.org
Join us!

Associate members
Full members
Personal members

Next – archive and information schools

www.dpconline.org
Digital Preservation in byte sized chunks:

why we should be careful what we wish for

biographical, idiosyncratic observations

William Kilbride
william@dpconline.org

www.dpconline.org