Scientific Data Curation and the Grid

David Boyd
CLRC e-Science Centre
http://www.e-science.clrc.ac.uk/
d.r.s.boyd@rl.ac.uk
Outline

- Some perspectives on scientific data
- Requirements of scientific data curation
- How the Grid can help
- Some current work at CLRC
The problem is growing . . .

- we have a rapidly increasing capability to generate data in many different formats in the physical and life sciences
 - environmental science, astronomy, particle physics, genomics, proteomics, clinical trials, . . .
- in all these areas data volumes are tending towards petabytes
- the facilities used to generate data are increasingly expensive
 - satellites, synchrotrons, supercomputers, telescopes, . . .
- some data is irreplaceable
 - measurements, surveys, . . .
- much future potential will lie in analyses which combine data across traditional disciplinary boundaries
- access to data will increasingly be needed on a global scale
Where is the value in data?

- in the **information** it conveys, not just in the bits
- in context and relationships as well as content
- **metadata** provides a key to this information - enhances value
- this needs to be recorded and preserved with the data
- if not captured digitally in (near) real time then it may never be recovered - need skills to do this
- need **ontologies** and **thesauri** to define and relate concepts
- well documented **data formats** help to maintain value
- use of globally accepted **standards** aids accessibility
- value also in **models** and **theories** needed to interpret data
- these are encoded in **software**
- how to preserve software as well as data?
“it is harder to preserve working software than to preserve information in digital or hardcopy forms”
Whose data is it anyway?

- data ownership often (usually?) unclear
 - with ownership goes responsibility
 - so responsibility for data curation usually unclear
 - so it often doesn’t get done
- one problem is the initial and ongoing cost of curating data
 - though often less than the cost of (re)generating data
 - but may not be funded as part of a grant
- another problem is lack of a culture of data curation
 - benefit not necessarily to the original producer
- needs a fundamental change of attitude by “sponsors”
 - recognition that data is a significant long term asset
 - willingness to fund long term data curation activities
Requirements of scientific data curation

• traditionally “keeping a collection”

• management
 – security - keeping data safe from threats
 – integrity - ensuring authenticity and completeness of the data
 – preservation - over time and technological change
 – acceptance of responsibility for data

• accessibility
 – exercising access control where necessary
 – providing knowledge of existence
 – enabling exploration of related information (metadata)
 – enabling retrieval of content (data)
 – preserving ability to read (physically) and understand (logically)
How the Grid can help

• offers a mechanism for controlling access
 - authentication and authorisation
• makes existence and location of data resources more visible
 - hierarchical directory service, global visibility
• provides easier access to data
 - single sign-on, location transparency, controlled replication
• integrates processes and data to generate enhanced value data
 - recalibration, filtering, transforming, post-processing . . .
• moves data to application or application to data
• facilitates distributed collaborative working by sharing data
• . . .
Some current work at CLRC

• Developing a Web/Grid portal for accessing scientific data
 - common top level metadata schema for scientific data
 - links to existing application specific metadata
 - ability to search distributed metadata catalogues
 - transparent access to distributed data resources
 - GUI access for people and API access for software/agents

• Operating a large data archive (~PB scale)
 - Grid-accessible primary data storage resource
 - provides data security, integrity, preservation
 - offers data archiving service to other primary data resources

• Participating in global standards activities
 - Global Grid Forum, WWW Consortium, ISO, etc, . . .