Medical Research Council

Peter Dukes
Strategy & Liaison Manager
Research Management Group
MRC Scope of MRC’s Programme

Molecules

Cellular & Physiological Systems

People & Populations

⇒ Data!
 • structures
 • mechanisms
 • associations

⇒ Data Sets
 • descriptions
 • analyses
 • models
 • linkages
Kinds of Data Set

Genomes / Bioinformatics
- Sequencing: high volume
- Annotating function
- Interoperability

Biomolecular Structures
- Real time experiments
- Modelling

Functional Imaging
- Complex information
- Integration across data

Clinical data bases
- 10 to 10^4 people
- Preserve for 20 years
- Meta-analysis - trials
- Personal information

Genetic data bases
- Family data
- Confidentiality
- Linkage to other data

Population data bases
- 10^3 to 10^4 people
- Multiple & repeat measures
- MRC/Wellcome Large Cohort - 5×10^5 people
Project scope
- Population data
- Archiving
- Access

Stage 1
Scoping survey
- Kinds of research design
- Size of studies
- Capture & storage media
- Data formats
- Extent of archiving

Policy questionnaire
- Public data sets register?
- Criteria for prioritising archiving?
- Expertise and capacity to archive
- Consent
- Model of archiving
 - central
 - distributed
Characteristics of MRC Data sets

Variables

• Complex
• Diverse
• Quantitative & qualitative
• Contentious
• Context dependent

Capture / Storage Media

• Paper, video, electronic, cards...

Formats

• Questionnaires, interview forms, diaries, instrument readings, images
Access Issues
Ownership
- Intellectual capital
- Value for the nation’s money

Quality
- Independent scrutiny of access requests?
- Controls on 2e research outputs?

Consent & Data Protection
- What did people consent to?
- Anonymisation

Collaboration
- Agreements

What can the GRID offer?

New opportunities for science

Metadata Issues
Extracting meaning from data
Defining
- target population
- interventions
- measures
- instructions to interviewers

Code books, software
Level of confidentiality
Skills and Capacity
Central focus
- IT and computing resource
- Data archiving skills

Shared central and distributed
- Access management
Stage 1 Conclusions

New research proposals
- should *include* archiving

Archiving older data sets
- “All should be preserved”
 - if technically sound
 - if ethically sound
- Needs skills, resources!

Models
- Social sciences
- Bioinformatics
- Biological imaging

Real concerns
- Loss of PI control
- Added bureaucracy

Stage 2 Plans

Several case studies
Examine
- current practices, skills, capacity, cost

Issues
- Primary data preservation
- IT & computing needs
- Metadata “readiness”
- “Ownership”
 - PIs, Funders, Nations
- Technologies and culture to support data access & exchange
- Scientific opportunity!