Case Study

Database archiving at the National Archives of Estonia

Kuldar Aas
29 - 30 July 2020

Database preservation using the Database Preservation Toolkit and SIARD : A Practical Workshop
e-government

- 98.2% ID-card penetration
- 46.7% usage of internet voting
- 110 countries votes cast from
- 66 000+ e-residents
- 1000+ yr working time saved by the X-Road
- 10 000+ business owned by e-residents
- 3 000+ services available via X-Road
- 700+ mil digital signatures used
- 2% GDP savings due to digital signature
- 52 000 organizations as indirect users of X-Road services

Ülevaade riigi infosüsteemist

900 Aktiivset asutust ja ettevõtet
üle 2600 registreeritud infosüsteemide ja andmekogu

https://e-estonia.com/e-estonia-toolkit/
Questions to address

- Appraisal of 2600+ datasets and 3000+ services

Case study: State Construction Dataset

- Managing the size and complexity of a relational database
- Pre-ingest process
- SIARD creation, archiving and reuse with DBPTK
Very Macro Appraisal

✔ Look at the descriptions of 2600 information systems

✔ Separate „datasets“ and „processing systems“

✔ Classify all datasets according to government functions
 ✔ Remove the ones supporting non-valuable functions (f.ex. finance, staffing)

✔ Within a function analyse primary vs secondary data (i.e. redundancy) and the value of services being offered
 ✔ Remove the ones which are only using secondary data and/or offer services where the data is not of archival value
Very Macro Appraisal

→ Two years of effort
→ Preliminary list of 26 key datasets of „high value“

* List to be regularly updated

** Assumed total number of valuable datasets in the Estonian public sector 70 – 90

*** Does not include scientific, statistical etc datasets
State Construction Dataset

- Core data on all buildings in Estonia
- Process of issuing permits
- List of companies certified for construction supervision, energy audits,..
- Documentation: permits, models, supervision and audit reports
- Used by all municipalities
- Public / open interface for accessing core building data
Size and Complexity

Is all of it really valuable?

How to present to archival users (technical skills, data protection)?

133 tables
8.9 TB

P.S! Numbers as of „after technical cleaning“
Database archiving activities at NAE

Intro

- First contact and questionnaire, negotiate people to participate
- Gather documentation
- Introductory meeting and DBPTK training

Archivists

- Set snapshot date and time
- Analyse dataset functions and business services
- Select views to archive
- Create archival descriptions
- Decide what documentation to keep
- Validate, confirm receipt

Technical team

- Test DBPTK, identify issues
- Full native copy of the system and data
- SIARD snapshot / Full dump
- SIARD snapshot / Materialised views
- Gather documentation
- Create SIP, transfer
- Receive and validate
Process - intro

✓ First contact (phone, e-mail)
✓ Questionnaire
 • **Who has to be involved** (business owners, archivists, DB admins, developers, hosts)
 • **Availability and timing**
 • Key technical details (DBMS, size, number of tables)
 • „Known issues“ (LOBs, geodata, queries in SQL vs app layer)
✓ Availability of documentation: data model, data descriptions, architecture, service descriptions, user guides, etc.
✓ Introductory meeting: discuss all details, determine next steps, explain the process and DBPTK
Lessons learned

- Run DBPTK as soon as possible!!!
 - Helps to assess resources (disk space, servers, time)
 - Helps to evaluate errors (connecting to the database, external LOBs, geo-data)
 - Not worth speculating on paper if the tool can be executed in 10 minutes..

- Create a full copy of the system
 - SIARD creation and validation can take a lot of time (read: weeks)
 - Turn off functions and procedures,
 - Data remains unchanged throughout the rest of the process!
Motivation: simplified „single table“ representation of data for simple users

- More than 200 views already available
- 84 views after removing technical system views
- Ask owner to describe all remaining views
- Archivists decide which views to materialise
 - Connection to business function and activity (records series, service)
 - Usage statistics
 - Data protection
- 13 views selected for materialisation
Process – finalisation

Lessons learned

✓ Transfer of 12 TB data can take a lot of time... consider packaging with tar, zip, ..

✓ Technical SIARD validation with DBPTK to be done at agency!!

✓ Technical documentation in bespoke formats (.eap)

✓ Creation of screencasts / videos of the original GUI (data input, services, queries)
Timing and resources

• Eight people involved
 o 2 NAE archivists
 o **NAE technical expert**
 o NAE project supervisor
 o Agency system owner
 o **Agency database administrator**
 o two technical experts at hosting company

+ technical support from KEEP Solutions
Timing and resources

- Whole process six calendar months
- Technical tasks
 - Technical testing, determining DBPTK configuration: 3 months
 - Setup of dedicated archiving infrastructure: 2 weeks
 - Creation of SIARD snapshots (three tries): 1 month
 - Copying and validation: 1.5 months (during Christmas..)
- View selection: 2 weeks
- Archival description, documentation selection: 2 weeks
What’s next

- Happy with the performance of DBPTK
- SIP for SIARD – work going on in E-ARK
- Checksum / manifest creation before transfer
- Set up DBPTK Enterprise as public access portal
 - Pre-load unrestricted materialised views
- Maintain and grow a list of prerequisites for database archiving
 - Try to influence national IT guidelines to implement relevant ones
- Archiving only materialised views where relevant
 - In 5 – 10 years
 - Requires good data governance to be in place!