LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

A Practical Case Study About Metadata

M. Lindlar
Online dpc Briefing Day, 30th April 2020
"Building a Digital Future : Challenges & Solutions for Preserving 3D Models"

What I'd like to talk about today

Setting the Scope

- Who is TIB
- What is the use case for 3D?
- Information types and file formats

Some Defintions

- Preservation metadata / PREMIS
- Technical metadata

Preservation Metadata for Architectural 3D

- Descriptive metadata buildm
- Technical metadata e57m and ifcm
- What can I use techMD for?

Conclusion and Outlook

Who is TIB?

TIB

- German National Subject Library for Science and Technology, <u>Architecture</u>, Chemistry, Computer Science, Mathematics and Physics
- University Library of the Leibniz University Hannover

- Founded 1959
- Annual budget (incl. project funding) 47 Mio. Euro
- Staff size: 536

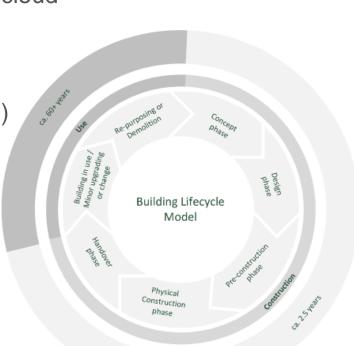
- Holdings: 9.2 Mio media units
- 56.750 journal titles (42.900 electronic)
 - → 60 % in national sole possession
- 76.7 Mio electronic docs (19.3 Mio pay-per-view)
- 209 km shelves
- Competence centre for non-textual materials

DURAARK project – Architectural 3D Data

DURAARK

DURAARK (DURAble Architectural Knowledge)

FP7 – ICT – Digital Preservation (STReP) February 2013 – January 2016

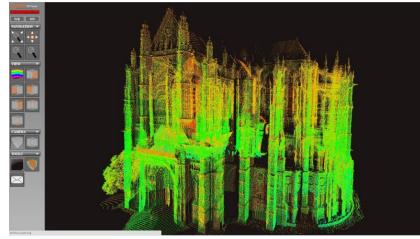

Goal: Develop methods and tools for digital curation and preservation of 3D building data (BIM, point cloud scans), metadata, related knowledge & web data

TIB Use Case:

Preservation of Building Information Models (BIM) & point cloud scans for

- Facility Maintenance
- Cultural Heritage

Results were incorporated into OAIS compliant digital preservation system (TIB Digital Archive)



Point Cloud Scans and e57

Point Clouds

- Set of points in a 3D coordination system
- Describe external surfaces of a scanned object
- Document a building or structure "as-is"
- Are inevitably tied to temporal and spatial aspects

http://archive.cyark.org/exterior-cathedral-of-beauvais-3dviewer

E57

- Openly standardized file format (E57 ASTM E2907-11 Standard)
- Supported by many scanner & software vendors
- Open reference implementation of supporting software available (libE57) www.libe57.org

ScanCoptor by FaroLabs

Building Information Models and IFC

BIM

- Covers entire design-to-construction process (incl. project planning, cost, part specifications, ...)
- Documents a building / structure "as-planned" / "perscriptive representation" → may deviate from the asis-state
- Moves towards "as-is" state for facility maintenance

IFC - Industry Foundation Classes

- ISO Standard within an ISO Standard
- STEP ISO 10303 application profile
- IFC ISO16739-1:2018
- As standardized data exchange format supported by most software vendors for CAD

3D CAD

Geometry along X-Y-Z axes

4D CAD

Schedule time

5D CAD

Cost-related information

6D CAD

Energy and sustainability

7D CAD

Facility management

What is Preservation Metadata?

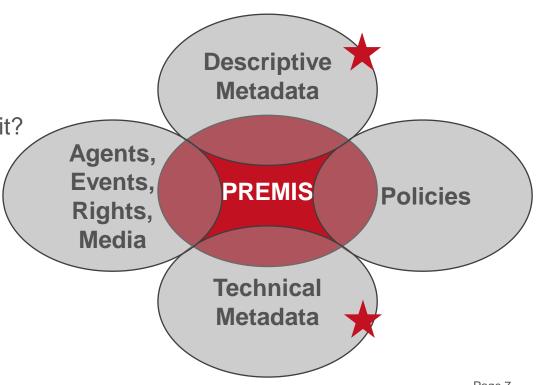
Preservation Metadata

NOUN UNCOUNTABLE /prezə(r) veɪʃ(ə)n/ metə deɪtə/ Information required to ensure the long-term usability of a digital object.

What is it?

Who created it?

No, what is it ... really?

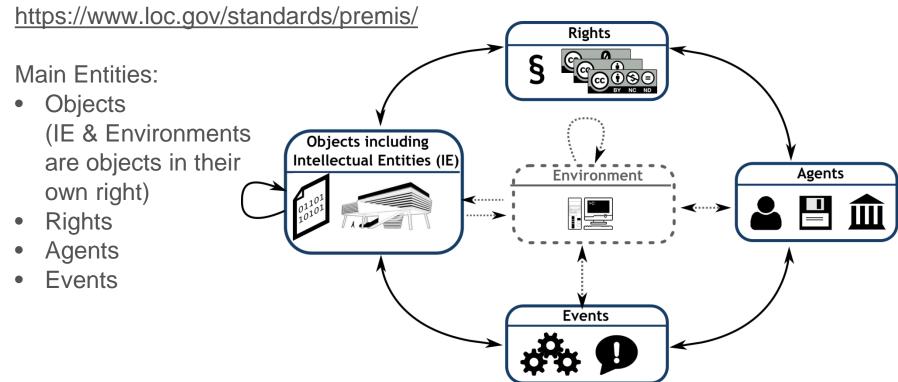

What am I allowed to do with it?

What am I supposed to do with it?

What did you do with it!?

Who should be able to

understand it?

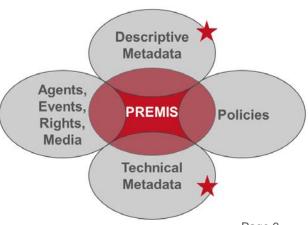

What is PREMIS?

PREMIS

NOUN UNCOUNTABLE / premis/

De facto standard for *preservation metadata*. Implementation agnostic data dictionary with accompanying documentation, an XML schema and an OWL ontology.

What is technical metadata (techMD)?


Technical Metadata

NOUN UNCOUNTABLE / teknik(ə)l/ metə deitə/

Physical (rather than intellectual) characteristics of digital object. Closely tied to file format.

Technical Metadata in PREMIS?

- recognizes importance of techMD
- recognizes that techMD specification requires expertise
- includes extensibility mechanism incl. semantic unit objectCharacteristicsExtension to use external techMD schemas

Examples for other techMD schemas

TechMD Schemas

- MIX "NISO Metadata Images in XML"
- audioMD and videoMD
- textMD

Other sources

- Tool-based output (e.g., JHOVE for pdf)
- Standards-based output (e.g., TIFF Tags)

Sample output (Excerpt of NisolmageMetadata for TIFF)

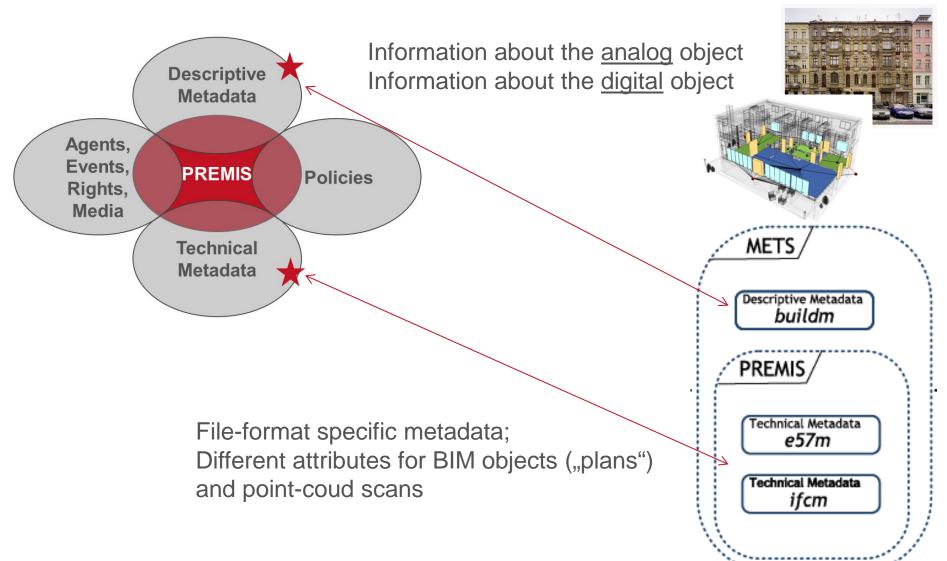
ByteOrder: little_endian

CompressionScheme: uncompressed

ImageWidth: 2961
ImageHeight: 4746
ColorSpace: RGB

ICCProfileName: sRGB IEC61966-2.1

ReferenceBlackWhite: 0, 255, 0, 255, 0, 255


DateTimeCreated: 2013-08-31T11:54:01 ScanningSoftware: SRZ ProScan V3.3

Orientation: normal

SamplingFrequencyUnit: inch

Metadata about architectural 3D objects

Descriptive Metadata – buildm

Schema

https://github.com/DURAARK/Schemas
(xsd and rdf serializations)

Data Dictionary

https://doi.org/10.5281/zenodo.1115511 p. 45 – 58

Based on

- CARARE v2.0
- MIT Facade PIM
- Rec. of Historic Buildings & Monuments Commission for England
- PROBADO3D MD Core
- Dublin Core

England

buildm	3.1 Draft	Historic Build- ings ⁵⁵	MIT FACADE PIM ⁵⁶	PROBADO3D meta- data core	Dublin Core ⁵⁷	CARARE
DigitalObject:creator			dcterms:creator	CONTRIBUTOR	dc:creator (digital)	Digital Resource: Actors
DigitalObject:filename		file name of raw data	dcterms:title	TITLE / MODELFILE	dc:title (digi- tal)	Digital Resource: Appellation
DigitalObject: dateCreated		date of cap- ture	dcterms:created	DATES	dc:date (digi- tal)	Digital Resource: Created
DigitalObject:isPartOf			dcterms:isPartOf	RELATION		Digital Resource: Is Part Of
DigitalObject:hasPart					RELATION	Digital Resource: Has Part
DigitalObject:Description				MODELDESCRIPTION	dc:description	Digital Resource:

buildm Entities: Data Object and Physical Asset

buildm – descriptive metadata for architectural 3D objects

Data Object section

Information about the digital object (scan, plan or any other digital object representing the Physical Asset

mandatory information

(identifier, creator, filename, date creatred)

optional information

(e.g., license, relation to other digital objects)

Physical Asset section

Information about the physical strucutre, e.g. address, architect, construction year

mandatory information

(identifier, name, latitude, longitude)

optional information

(e.g., architect, modification date function, description)

buildm - minimal set of information

Mandatory - Physical Asset

- PhysicalAsset:identifier
- PhysicalAsset:name
- PhysicalAsset:latitude
- PhysicalAsset:longitude

Mandatory – DigitalObject

- DigitalObject:identifier
- DigitalObject:creator
- DigitalObject:name
- DigitalObject:dateCreated

- minimal descriptive information required to manage digital assets over long term
- Specific to the use cases:
 - architectural 3D data
 - facility maintenance

- historic building data
- partially extractable from digital objects

... schema can be easily adapted to YOUR use case

Technical Metadata – e57m and ifcm

Schemas

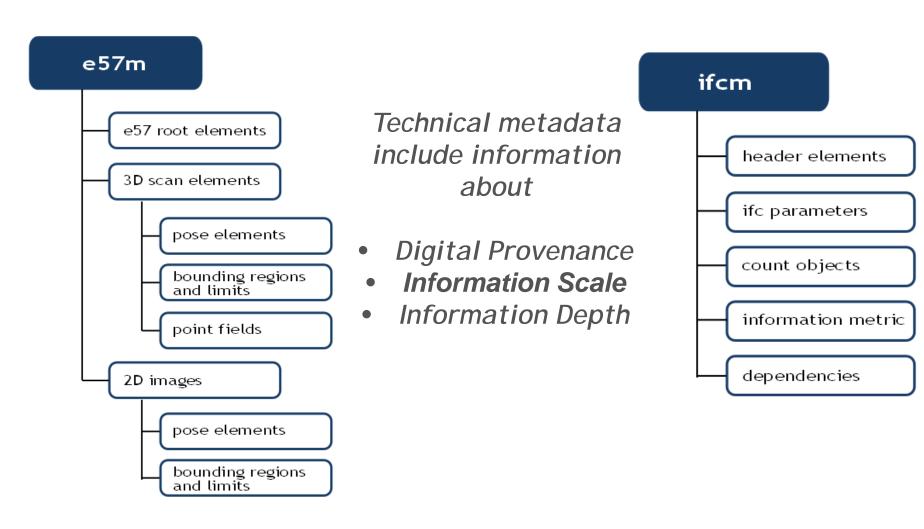
https://github.com/DURAARK/Schemas (xsd and rdf serializations)

Data Dictionaries

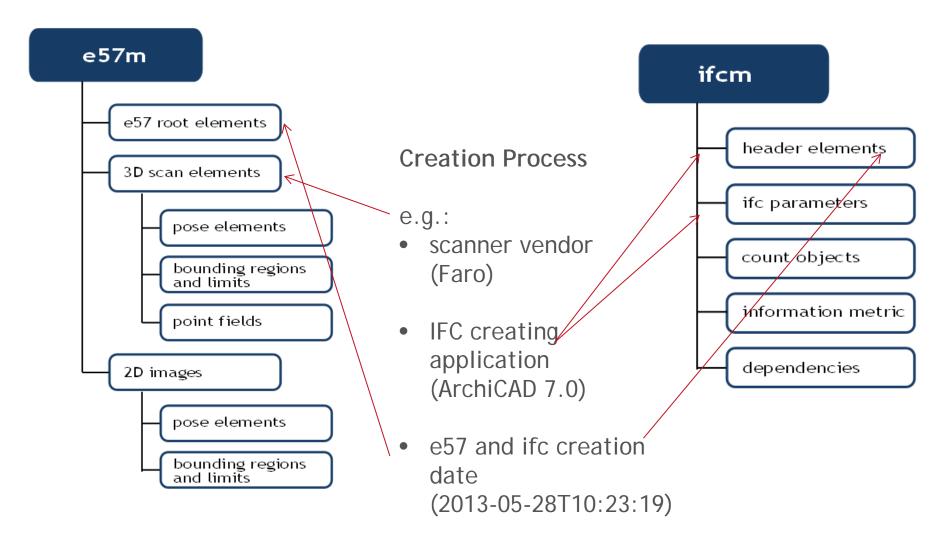
https://doi.org/10.5281/zenodo.1115511 e57m - p. 60 - 88 Ifcm - p. 88 - 98

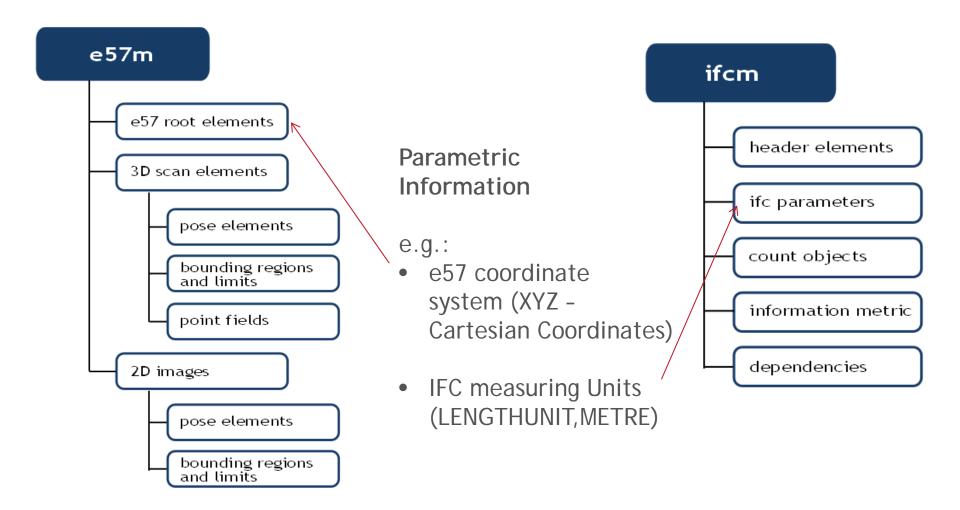
Based on

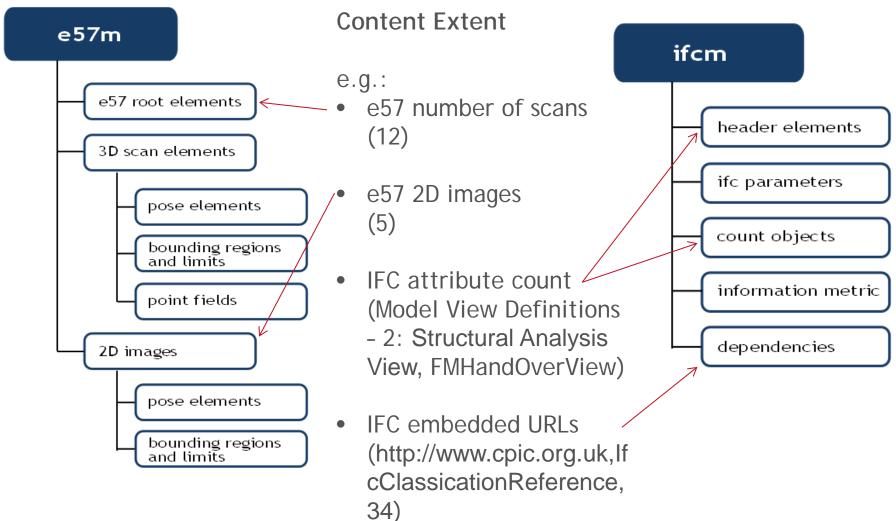
- What's in the file formats
 based on openly available specs
- What is already extractable based on libe57 (http://www.libe57.org/) and IfcOpenShell (http://ifcopenshell.org/)
- What use case owners need
 Conducted workshops and surveys



the open source ifc toolkit and geometry engine


Technical Metadata – e57m and ifcm


Technical Metadata – Digital Provenance


Technical Metadata – Information Scale

Technical Metadata – Information Depth

Technical Metadata – What do I need it for !?

Collection profiling

Ground truth about data you have in your repository

Further risk analysis

 to group together objects that share a risk (e.g., dependency on external resources linked via URLs)

Preservation planning

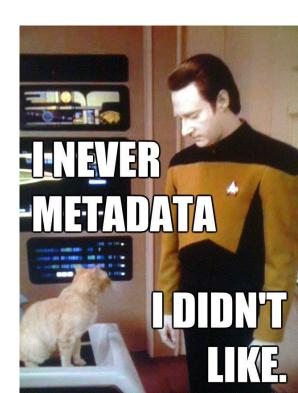
 to build a set of objects for further preservation processing (e.g., extraction of 2D images from e57 files)

Preservation action

 Knowledge of creating software allows to target correct rendering environment in case of emulation

File Format Validation

techMD extraction is about 2/3rds of the way towards validation



Conclusion and Outlook

- Schemas and processes established through buildm, e57m and ifcm are still valid for TIB today
- Number of models in TIB Digital Archive comparatively low (120 objects of 2 million total)
 - Requires easy to maintain workflow with best possible knowledge of data
- Looking to extend techMD schemas to support further file formats / 3D content types
 - Interested in possibility of super-class for (architectural) 3D content
- Gain better understanding of IFC validation
 - Reported problems even with roundtripping
 - Due to vast degrees of IFC implementation IFC validation is a huge undertaking

LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

Thank you! Questions? Comments!

Contact:

M. Lindlar - TIB Hannover

5 0511 762 19826

S Lindlarm

Further Resources

TIB Digital Preservation Wiki https://wiki.tib.eu/confluence/display/lza/Digital+preservation+at+TIB

Buildm, ifcm and e57m schemas https://github.com/DURAARK/Schemas

E57m and ifcm metadata extrcators https://github.com/DURAARK/duraark-metadata

DURAARK Repository http://duraark.eu/data-repository/