DIGITAL PRESERVATION PLANNING AT TATE

Presentation to the DPC Roadshow: Getting Started in Digital Preservation

London, 23 April

Anna Henry, Digital Preservation Manager, Tate
BACKGROUND

- Tate has 3 sites in London (Tate Modern, Tate Britain and Tate Stores) as well as galleries in Liverpool and St. Ives and employs over 1000 staff.

- Tate is an exempt charity and receives some of its funding from central government. This means Tate is subject to the Public Records Act and Freedom of Information Act.

- Tate holds the national collection of British art, plus an extensive collection of modern and contemporary art. Tate Archive holds over a million records on British art from 1900 to the present.
1. WHAT DO WE HAVE?

2. WHERE ARE THE BIGGEST RISKS?

3. WHERE ARE THE EASY WINS?
1. WHAT DO WE HAVE?

- At Tate we have a large volume of digital assets to manage, all with different requirements and responsibilities for digital preservation.

- The first step was to analyse our content and categorise them.

- At a high level, we identified four categories of assets at Tate:
a) DIGITAL COLLECTION ITEMS

- Born Digital Artworks and Archives
- Collection items that need to be migrated to digital

Video art

Art that involves the use of video and/or audio data and relies on moving pictures

Bill Viola
Nantes Triptych 1992
Video and mixed media
duration: 29 min., 46 sec.
b) DIGITISED REPRESENTATIONS OF COLLECTION ITEMS
c) DIGITAL PUBLIC RECORDS

Anything created or received by a Tate employee in the course of doing their job:

- Emails
- Documents
- Meeting notes
- Images
- Audio-visual material
- Conservation science data
- Social Media and blogs

...etc
d) USER-GENERATED CONTENT

- Public contributions to social media
- Contributions to interactive gallery displays
- New albums feature on Tate website
- Tate Kids website
2. WHERE ARE THE BIGGEST RISKS?

- A Digital Asset Register records information about the various asset types.

- This information was gathered during a comprehensive exercise of staff interviews and analysing shared drives. It is updated as new types of assets are discovered and created.

- Information about the file formats and software used, and where and how data is stored, helps assess risk.
DIGITAL ASSET REGISTER

<table>
<thead>
<tr>
<th>ASSET TYPE (A-Collection, B-Surrogate, C-Record)</th>
<th>SUB-CATEGORY NUMBER</th>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>ISSUES</th>
<th>LOCATION</th>
<th>Value to Tate</th>
<th>File formats & Extensions</th>
<th>No. of GB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>DA002.12</td>
<td>Conservation Science – GCMS data</td>
<td>Data from two gas chromatography/mass spectrometry (GCMS) machines. Files are in machine-specific formats; typically around 2MB. Similar to DA002.13.</td>
<td>The manufacturer of the GCMS has recently been taken over. Support for this machine is expected to terminate in 5 years time. Support for its proprietary file formats after that time is unknown. A third party offers conversion software, and it is possible to store in – and convert to – other file proprietary formats.</td>
<td>C Drive</td>
<td>3</td>
<td>SMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>DA002.13</td>
<td>Conservation Science – GCMS data from previous machine</td>
<td>Data from the gas chromatography/mass spectrometry (GCMS) machine that is no longer owned by Tate. Files are in machine-specific formats; typically around 2MB. Similar to DA002.12.</td>
<td>The files cannot be read by the manufacturer’s current software; old 3rd party software has to be installed to read them. Software dates back to 2004, run on XP. Availability with other operating systems not known. The only index is handwritten log books.</td>
<td>T Drive</td>
<td>3</td>
<td>MI</td>
<td>MX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>DA002.14</td>
<td>Conservation Science – spectrophotometer data</td>
<td>Data from the spectrophotometer. Files are in machine-specific formats; some about 6kB each (size varies with sampling) but many in the tens of kB. Data is viewed with proprietary software, often as a line graph. File format is widely used.</td>
<td>Proprietary formats.</td>
<td>T Drive</td>
<td>4</td>
<td>WSV</td>
<td>31.1</td>
</tr>
<tr>
<td>ISSUES</td>
<td>Location</td>
<td>Value to Tate</td>
<td>File formats & Extensions</td>
<td>No. of GB</td>
<td>Projected volume (GB per pixel)</td>
<td>No. of objects</td>
<td>Naming risk</td>
<td>Lack of metadata</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lack of metadata; lack of consistency in file naming, formats and location etc. Some files not backed up anywhere and therefore irreplaceable</td>
<td></td>
<td>4</td>
<td>MiniDV tape MOV QT</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Inconsistent storage and naming. Some in H: drives of staff who have left (and consequently volumes not readily available) High-quality and low-quality images are mixed indiscriminately together, as are high and low importance images</td>
<td></td>
<td>4</td>
<td>JPEG TIFF BMP GIF PSD</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>High level of duplication. At a guess, QXD files come from a specialised application.</td>
<td></td>
<td>1</td>
<td>JPEG QXD PDF QXP EPS MOV</td>
<td>107</td>
<td>49,000</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Some images are likely to be duplicates, but this would need to be verified.</td>
<td></td>
<td>1</td>
<td>JPEG TIFF PNG EPS GIF PSD</td>
<td>20.5</td>
<td>3,132</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Majority of CD & DVD images are repeated on the network drives, but not all. Images on local drive, CD & DVD are at risk. Some of the discs are full, but about 40% of the discs</td>
<td></td>
<td>4</td>
<td>JPEG TIFF EPS PDF WMV</td>
<td>86.4</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3. WHERE ARE THE EASY WINS?

- Looking at a long list of risks can be a little overwhelming!
- Prioritise your focus
- Look at highest value assets facing the most immediate risk
- Establish what can be done with the resources available
- Focus on the easy (or easier) wins
- Set short-term and long-term goals
Photographer Unknown; Photograph of England Rugby XV; TGA 9019/1/4/4/17; Photographic Rights © Tate (2015), CC-BY-NC-ND 3.0 (Unported), http://www.tate.org.uk/art/archive/tga-9019-1-4-4-17/gotch-tuke-photograph-of-england-rugby-xv
SHORT-TERM GOALS

- As a first step, we are focusing on identifying all the digital assets we have and gaining more control over new assets being created.

- Aiming to get all high-value digital assets off obsolete media and into managed storage.

- Focusing on Bit Preservation buys us some more time to develop preservation plans for some of our more complex assets.
LONG-TERM GOALS

- Our longer-term aims will include:

- Implementing a Digital Asset Management system across Tate, to address some of the more widespread risks around lack of metadata and duplication of assets.

- Expanding our High-Value Digital Asset Storage infrastructure and developing ingest and access systems.

- Implementing a Preservation Management system, in order to track risks facing our assets.
QUESTIONS?

Anna Henry
Digital Preservation Manager, Tate

anna.henry@tate.org.uk