Getting Started in Digital Preservation: what do I need to know?

William Kilbride
@williamkilbride
What has brought you here today?

Write down what you want to hear about ...

... later we’ll find out if we’ve answered the questions
Getting Started in Digital Preservation: what do I need to know?

It won’t go away
It won’t do itself

You already have many of the skills you need!
Digital preservation typically makes bleak reading ...

When asked about how long their digital resources would be available for, JISC-funded projects said ...

‘In perpetuity’
‘Indefinitely’
‘50 years’
‘10 years then elsewhere’
‘until 2014’
‘forever or for three years’

DPC/Portico/ULCC 2010
Digital preservation typically makes bleak reading

“...of all the web links cited in answers to parliamentary questions 1997-2006, 40 percent are now broken” (Spencer et al 2009)
Digital preservation typically makes bleak reading 3

<Enter your details here>

…………………………………………

…………………………………………

…………………………………………
What’s the problem?
• Digital data (images, documents etc) have value
• They create opportunities
...but...
• Access depends on software hardware and people
• Technology and people change
...therefore...
• Technology can create barriers to reuse
• So, managing data in the long term protects and creates opportunities

• We don’t do it ‘just because’
We do preservation because we want to be:

1. **Transparent**
e.g. Data Protection, Freedom of Information ... childcare, human tissue
2. **Safer**
e.g. preparedness, detection, disaster, recovery, audit
3. **Smarter**
e.g. scientific value, access to heritage, value of social knowledge
4. **Wealthier**
e.g. efficient business, management of IP, employment, planning, creative
5. **Healthier**
e.g. managed life history, research and safe innovation
6. **Greener**
e.g. evidence-based policy development, efficient data retention
And because of

1. **Legal Compliance**
 e.g. Sarbanes-Oxley, Data Protection

2. **Regulatory Compliance**
 e.g. power generation, aviation, banking

3. **Legal protection**
 e.g. patents, mis-selling, detection, audit

4. **Unanticipated exploitation**
 e.g. petro-chemical, music, pharmaceuticals

5. **Business Continuity and improvement**
 e.g. product recall, disaster recovery

6. **Business Value**
 e.g. getting the right information to the right people at the right time in a format they can use
Digital preservation is not just about ‘data’: Digital preservation is not just about ‘access’: Digital preservation is not just about ‘risk’: it’s about people and opportunity.
Four basic responses to long-term preservation:
• Some fancy words
1. **Migration**
 Changing the format of a file to ensure the information content can be read

2. **Emulation**
 Intervening in the operating system to ensure that old software can function and information content can be read

3. **Hardware preservation**
 Maintaining access to data and processes by maintaining the physical computing environment including hardware and peripherals.

4. **etc**
 Research and development field, new solutions and new approaches continue to emerge, eg virtualisation for preservation
Six basic challenges and how to address them

• Tools
• Services
• Fancy words
Challenge 1:

Access and long term use depends on the constant configuration of hardware, software data and the capacity of the operator.

... so we need to capture this configuration and use it to enable access.

Metadata, documentation, representation information
Challenge 1:

Metadata, documentation, representation information

Different levels of answer:
- OAIS Information Model
- PREMIS Data Dictionary
- METS for wrapping data
- Registry services (e.g. TOTEM, PRONOM etc)
Challenge 2

Technology continues to change creating the conditions for obsolescence.

... so we need to plan accordingly, expecting that our current plans may need to change.
Challenge 2

Planning and learning

Be a learning institution

Different solutions:

• OAIS Planning Functions
• PLATO: Tool – Library and Methodology
• PLANETS Testbed
• Audit and certification: DANS, TRAC / 16363, DIN 31644
Challenge 3

Storage media fail, have a short life and storage devices are subject to obsolescence.

... so we need a storage strategy which includes error checking and refreshment
Challenge 3

Storage and refreshment

Different Solutions:
• Multiple media
• Controlled storage
• Self reporting media
• Lots Of Copies Keeps Stuff Safe
• Cloud storage

Beware: proliferation can become a problem
Challenge 4

Digital preservation systems are subject to the same obsolescence as the objects they safeguard.

... so we need systems which are modular, based on standards and which can be tested on an on-going basis
Submit

Archive

Disseminate

Fig. 1. Major functions of the OAIS Reference Model from Consultative Committee for Space Data Systems (CCSDS), CCSDS 650.0-W-1, Producer-Archive Interface Methodology Abstract Standard, (OAIS), White Book, Issue 1, Draft Recommendation for Space Data System Standards.

Picture from DLib
Consultative Committee on Space Data Systems
Inadvertent comparison with NASA
Scales up really well
Challenge 5

Digital resources are intolerant of gaps in preservation.

We need to act early and we need to act on an on-going basis. Lends itself to risk management approaches
Challenge 5

On-going preservation

Different responses:
• Intervene early in lifecycle
• Transferable AIPs
• Risk management approach e.g. DRAMBORA
• Monitor community
Challenge 6

Resources can be corrupted or tampered without trace

Need to fixity and authenticity checks
Challenge 6

Fixity and authenticity

A variety of solutions:

• Checksum
• Forensic tools
• Authenticity Evidence Records
• Data security protocols
In reality?
You don’t need to understand or do all of this.
... and even if you do, it doesn’t all have to exist at the same time ...

Our digital memory accessible tomorrow
Getting Started in Digital Preservation: what do I need to know?

It won’t go away
It won’t do itself
Don’t wait for perfection

William Kilbride
william @dpconline.org
@williamkilbride