VERSIONING YOUR
DOCUMENTATION:
REMEMBERING WHY YOU
USED TO DO SOMETHING
THAT WAY”

NATHAN TALLMAN

DIGITAL PRESERVATION LIBRARIAN, PENN STATE UNIVERSITY LIBRARIES

|4 SEPTEMBER 2023

DPC DOCUMENTING DIGITAL PRESERVATION: A WORKSHOP

WHEN ISVERSION CONTROL HELPFUL?

How-to guides Reference Explanation
[Okay fit] [Good fit] [Good fit]
oriented to a goal information understanding
show how to ,
. describe the :
must solve a specific : explain
machinery
problem
: : o discursive
its form a series of steps dry description :
explanation
. a reference an article on
analo arecipein a encyclopaedia culinary social
&Y cookery book -/ €loP . 4
article history

See more at https://documentation.divio.com/introduction/.

Presenter Notes
Presentation Notes
Before we get into the weeds on version control, let’s first discuss the types of documentation for which it is well-suited. The table on this page shows background shading based on suitability. Version-controlled documentation is great for reference and explanation documentation. It can work for how-to-guides but is probably not the best option for tutorials. This is because how you apply version control is very much depends on the platform being used. We’ll mostly discuss GitHub/GitLab here, but tutorials often are often interactive whereas the other types are more static.

You can read more about these types of documentation and tips for creating each type at the URL on the screen. It’s a helpful resource. The table headers are links to specific webpages.

https://documentation.divio.com/tutorials/#tutorials
https://documentation.divio.com/how-to-guides/#how-to
https://documentation.divio.com/reference/#reference
https://documentation.divio.com/explanation/#explanation
https://documentation.divio.com/introduction/

WHAT ISVERSION CONTROL!?

e Rooted in software development
® A series of snapshots (commits) for a repository of files

e Keeps track of all changes, additions, and deletions
o Who (username)
o What (line-level changes)
o When (timestamped)

o Why (commit message)

® Files (or the entire repository) can be restored to a points in time (commit)

e Allows concurrent work on future and current documentation (or for specific audiences) through branches.

e Facilitates collaboration

Presenter Notes
Presentation Notes
Version control is like having a time machine for your digital projects. Imagine you're working on a big project, like a documenting a new workflow. Each time you make changes to the documentation, instead of just saving over the previous version, you create a snapshot of that moment. This snapshot keeps track of everything you've changed, added, or removed.

Now, let's say you and your team disagree on some edits. With version control, you can compare different snapshots to see exactly what was changed and when. If you want to go back to a previous version, you can do that too, just like turning back time on your project. This is helpful because you can experiment with changes without worrying about ruining your work.

In your world of digital preservation, version control is like a superhero power. It helps you keep track of all the changes made to documentation over time, making sure nothing gets lost or accidentally changed. Just like how you value preserving digital information, version control helps preserve the history of your programs changes, making sure you and your team can always go back and see what was done and why.
�

VERSION CONTROL PLATFORM: GIT

* Git is the worlds most popular version control
tool and is the underlying technology behind
GitHub and GitLab.

* A git repository is a collection of tracked files.

v
C

Changes are committed to the repository with

a message.

* Work can be decentralized, with individuals
working on their own computers and pushing
commits to a central git repository.

* Branches help track specific groups of changes.

See more at https://about.gitlab.com/topics/version-control/.

Presenter Notes
Presentation Notes
Git is the worlds most popular version control tool and is the underlying technology behind GitHub and GitLab. You may also hear about Subversion or Mercurial, older tools that are still sometimes used.

A git repository is a collection of tracked files, sometimes referred to as the codebase. Changes are committed to the repository with a (hopefully) descriptive message. Work can be decentralized, with individuals working on their own computers and pushing commits to a central git repository. Branches are different versions of the repository to better group sets of related changes or to have audience-specific flavors of the documentation.

On the illustration, each node is a different copy of the repository. Sometimes there are forks where the code branches. In the center is GitLab, an online hosted central git repository where team members can push/pull to collaborate and use additional tools like issue tracking or a kanban board for lightweight project management.

Image credit: https://about.gitlab.com/_nuxt/image/c8dffc.svg, https://about.gitlab.com/topics/version-control/

https://about.gitlab.com/topics/version-control/

GITHUB, GITLAB: WHAT’S THE DIFF? (%)

Similarities Differences

* Version Control * Ownership and licensing

* Repository Hosting * Pricing models

* Collaboration * Continuous Integration/Continuous

Development

Issue Tracking

* Visibility

Pull Requests/Merge Requests

Wikis

Presenter Notes
Presentation Notes
GitHub and GitLab are both platforms that facilitate version control and collaboration for software development projects. They serve as repositories for storing files and tracking its changes over time. While similar in their core purpose, they also have distinct features that cater to different preferences and needs. Let's delve into their similarities and differences.

Similarities:
Version Control: Both GitHub and GitLab are built around the version control system called Git.
Repository Hosting: Both platforms provide cloud-based hosting for repositories. This means developers can store their code remotely, making it accessible to collaborators from anywhere with an internet connection.
Collaboration: Both platforms allow multiple developers to work on the same project simultaneously. They provide tools for managing contributions, reviewing code, and resolving conflicts that might arise from parallel work.
Issue Tracking: Both platforms offer tools for issue tracking and project management. This helps teams organize tasks, track progress, and communicate about specific features, bugs, or improvements.
Pull Requests/Merge Requests: Both platforms support the concept of pull requests (GitHub) or merge requests (GitLab). These are mechanisms for proposing changes to the file repository and having them reviewed before they are merged.
 Wikis: Both platforms have built-in, git-backed wikis.

Differences:
Ownership and Licensing:
GitHub: Historically, GitHub has been the most popular platform and was acquired by Microsoft. GitHub offers both free and paid plans, with certain advanced features limited to paying users.
GitLab: GitLab offers a more comprehensive solution with a wider range of features, including the option to host GitLab on your own servers (self-hosting).
Both can also be self-hosted.
Pricing Model:
GitHub: Offers free public repositories and charges for private repositories and additional features.
GitLab: Provides a free version for both public and private repositories, as well as a paid version with advanced features.
Built-in CI/CD:
GitHub: Offers GitHub Actions, an integrated Continuous Integration/Continuous Deployment (CI/CD) platform that automates testing and deployment workflows.
GitLab: Integrates CI/CD functionality directly within the platform, providing tools for automating build, test, and deployment processes.
Visibility:
GitHub: Primarily used for open-source projects and tends to attract more individual developers and smaller teams.
GitLab: Commonly chosen by organizations that value the ability to self-host, have more control over their repositories, and require a more comprehensive set of features.

Both GitHub and GitLab are powerful tools for version control and collaboration.

A NOTE ON SYNTAX: MARKDOWN

* A git-based documentation system is likely to use a lot of text with formatting and some

media like images or videos. But it won’t be like editing a Microsoft Word document.

* Markdown is a light-weight syntax for formatting text. GitHub and GitLab will
automatically render a markdown file (.md) as HTML.
¢ Simple example:
* This **sentence™* uses [markdown](https://www.markdownguide.org/) for formatting.

* This sentence uses markdown for formatting.

See markdownguide.org to learn more about Markdown.

https://www.markdownguide.org/
https://www.markdownguide.org/

FULL DISCLOSURE: TECHNICAL BARRIER

* To fully leverage the advantages of a git-based version control system for documentation,
individual workstations need to be configured to interact with GitHub or GitLab.

* Creating an SSH key, per device, and saving to profile
* Installing and configuring git
* Installing and configuring an Integrated Development Environment.

* This is technically optional, but it’s much easier for beginners.

* Visual Studio Code, or VS Code, from Microsoft is highly recommended.

* Not all teams will be comfortable with this high-level of technology and adoption/use should
be a driver of documentation. If no one on your team would use this approach, you shouldn’t
force it on them. People are very creative at ways to avoid things they don't like.

GITHUB EXAMPLES

Archivists Guide to Kyroflux UC Guidelines for Born-Digital Archival

* Uses markdown Description

* 8 contributors, 405 commits * Uses markdown

* |1 forks — people who have made a copy * |l contributors, 88 commits

of the repository * |0 forks

¢ Uses Issues to report errors * 2 branches

Presenter Notes
Presentation Notes
[Open up one of these and demo]

https://github.com/archivistsguidetokryoflux/archivists-guide-to-kryoflux
https://github.com/uc-borndigital-ckg/uc-guidelines
https://github.com/uc-borndigital-ckg/uc-guidelines

GITLAB EXAMPLE (SELF-HOSTED)

Digital Preservation Documentation (only avail to PSU users, sorry)

* Uses both file repository and wiki
* File repository — more stable, finalized documentation
* Wiki — more ephemeral documentation

* The file repository and wiki repository are different!

* | |2 commits

* Visual Studio Code / GitLab Demo

Presenter Notes
Presentation Notes
Show VS Code and how to update

https://git.psu.edu/digipres/documentation
https://git.psu.edu/digipres/documentation/-/wikis/home

SHARE YOUR DOCUMENTATION WITH LICENSING

* GitHub and GitLab were originally designed for software development where licensing is

important.

* Both allow you to upload a LICENSE file which will display as a badge on the repository.

Update license

43efh580 ™
Mathan Tallman [L.”,

main - libsafe-tools [/ LICENSE Find file Blame History Permalink

m Replace | Delete || [B | B | &

LICENSE [34.24KiB

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 20087

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

CONCLUSION

Version-control is a way to help your
future self and successors remember the
past.

Collaborative documentation makes for
better documentation.

For a superlative example of how far you
can take a git-backed documentation
method, see the Rockefeller Archive
Center Documentation.

https://docs.rockarch.org/
https://docs.rockarch.org/

	Versioning your Documentation: Remembering Why You Used to Do Something ‘That Way’
	When is Version Control Helpful?
	What is version Control?
	Version Control Platform: Git
	Github, gitlab: what’s the Diff? 🤣
	A note on Syntax: Markdown
	Full Disclosure: Technical Barrier
	GitHub Examples
	GitLab Example (Self-hosted)
	Share Your Documentation With Licensing
	conclusion

