
Niamh Murphy
Digital Preservation Librarian

Working with
Diverse Language Characters 
in Preserved Digital Content



Diacritics and non-Latin scripts are fundamental to 
the accurate interpretation and understanding of our 
written languages, across the globe.

However, despite their significance, they pose notable 
challenges in the realm of digital preservation.

By understanding the importance of these characters 
and acknowledging the obstacles they present in 
digital preservation, we can strive to develop inclusive 
and equitable solutions that uphold linguistic diversity 
and cultural integrity in the digital landscape.

Introduction



Diacritics

Acute accent

(á)
Grave accent

(à)
Cedilla

(ç)

Haček

(č)
Tilde

(ã)

Circumflex

(â)

Diaeresis

(ä)
Macron

(ā)



Non-Latin Scripts
• Arabic

• Armenian

• Chinese

• Cyrillic

• Greek

• Hebrew

• Japanese

• Korean

• N’Ko

• Tagalog

• Tamil

• Thai



Challenges 
in
Digital
Preservation

Historically, digital environments prioritized English-based character encoding standards, leading to an 
unintentional exclusion of diacritics and non-Latin scripts, and subsequently inadequate support of these 
character sets. As a result, texts featuring diacritics and/or written in non-Latin scripts may be displayed 
incorrectly, garbled, or rendered illegible when transferred from one environment to another, or processed 
using a particular software. This is of particular relevance when working with legacy systems.

Default Optimisation:

Even now, there are inconsistencies in relation to character encoding standards, schemas and 
normalisation forms across digital systems, platforms and software applications.
These inconsistencies can lead to diacritic erasure, mojibake, etc. all of which result in the 
misinterpretation or loss of meaning in text.

Inconsistency:

On a related note, when lacking support, diacritics and non-Latin scripts may be replaced with placeholder 
symbols such as the "tofu" symbol (□) or the question mark within a diamond (�).
These rendering issues also compromise the legibility and integrity of text featuring diacritics and non-
Latin scripts.

Placeholder Symbols:



For the purpose of this presentation, 
language default refers to an English language 
default, which impacts billions of people, and is 
present across countless personal and professional 
environments.
It is an issue that is often perpetuated without 
detection, but there are ample opportunities for 
mitigation.

Language Default
The perpetuation of an English language default can exacerbate linguistic 
inequality and contribute to the marginalization of languages outside of the default.

This is evident in digital contexts where English-centric encoding standards and 
practice may not adequately support or represent diacritics and non-Latin scripts.

As a result, texts written in languages such as Arabic, Chinese, French, Irish, Spanish 
or Welsh may face misrepresentation, rendering issues or character corruption 
when encountered in English-centric digital environments.

Challenges and Impact:

While the prevalence of an English language default presents challenges, there are 
ample opportunities for mitigation. The first step in addressing this issue is raising 
awareness of the impacts of a language default. 
By acknowledging the importance of diacritics and non-Latin scripts and 
advocating for their inclusion in digital preservation efforts, we can work towards 
developing more inclusive and equitable digital platforms and tools.
Additionally, by leveraging technologies we can help facilitate the accurate 
representation and preservation of all language in preserved digital content. 

Opportunities for Mitigation:



Points of Failure

01

02

03

04

In the preservation of diverse language characters in digital 
content, there are various points of failure where errors or 
deficiencies can occur. 
Identifying these points of failure is important for understanding 
the challenges associated with handling diacritics and non-Latin 
scripts in digital preservation efforts. 
Here are some key areas where failures may occur:

Web Browsers

Operating Systems

Software

Source Code

Web browsers serve as gateways to 
digital content, but they can sometimes 
fail to accurately render or display text 
containing diacritics or non-Latin 
scripts. 
This can be due to: 
• Limitations in font support
• Rendering algorithms 

As a result, users may encounter garbled 
text, missing characters, or rendering 
errors.

Operating systems play a crucial role 
in managing and displaying digital 
content on various devices. 
However, there are inconsistencies across 
operating systems in terms of encoding 
standards and forms.
As a result, users may encounter errors 
when transferring content from one 
environment to another.
Additionally, language settings and 
localisation options within operating 
systems may not fully accommodate the 
linguistic preferences and requirements of 
diverse language communities.

Software used for content creation, 
processing, and dissemination may 
encounter challenges in handling 
diverse language characters due to 
limitations in font support and 
inconsistencies across encoding 
standards, encoding forms and 
normalisation forms. 

On the back end of all the above is 
the source code. The code behind 
your operating systems, software, 
and browsers may incorporate 
varying encoding standards, 
encoding forms, and normalization 
forms.
Additionally, different programming 
languages use different internal string 
representations and report length 
according to varying units such as 
ints, shorts, bytes.



Unicode stands as the universal character encoding standard for written characters 
and text. It provides a consistent framework for encoding multilingual text, enabling 
the exchange of text data internationally and facilitating global interoperability in 
digital environments. 
By adopting Unicode, the information technology industry has moved away from 
disparate character sets towards data stability and compatibility across languages 
and scripts.

Unicode

Code Points: Unicode assigns a unique numeric value, 
known as a code point, to each character in its repertoire. 
This allows for precise identification and representation of 
characters from diverse writing systems.

Character Repertoire: The Unicode Standard 
encompasses over 1 million characters, covering the written 
languages of the world. This extensive repertoire includes 
alphabetic characters, ideographic characters, symbols, 
and diacritical marks, ensuring comprehensive support for 
linguistic diversity.

Character Encoding Forms: 
Unicode supports the following encoding forms:
• UTF-8
• UTF-16
• UTF-32

They define how characters are represented in binary 
format. These encoding forms offer flexibility and efficiency 
in storing and transmitting text data across different digital 
platforms and systems.



UTF-8 Explained
• One of the encoding forms supported by 

Unicode.
• It is widely used for its compatibility with ASCII 

and its efficient use of storage space.
• UTF-8 encodes characters using one to four 

bytes, depending on the character’s code point 
value.

• This encoding scheme accommodates the full 
range of characters in the Unicode repertoire, 
from Arabic to Chinese, Latin to Korean, etc.



A Tale of Two
Code Points
Multibyte Characters and 
Extended Grapheme 
Clusters

In the context of Unicode encoding, 
characters (or graphemes) can sometimes 
consist of more than one code point, 
leading to the concept of extended 
grapheme clusters. An understanding of 
extended grapheme clusters aids the 
accurate representation and manipulation 
of text data in digital environments.

An extended grapheme cluster is a sequence of one or more Unicode code points that must 
be treated as a single, unbreakable character. Unlike individual code points, which may not 
always correspond to a single character in the user's perception, extended grapheme clusters 
represent minimally distinctive units of writing in a particular writing system.
For example, in Unicode, characters like "ö" in German or "시" in Korean may be composed of 
multiple code points.

The encoding of multibyte characters and extended grapheme clusters presents unique 
challenges, particularly in relation to text manipulation operations such as selection, copying, 
editing, or deletion. Failure to respect multibyte characters and extended grapheme clusters 
can result in data corruption and rendering issues. 

In some programming languages and frameworks, the default behaviour is to treat strings as 
sequences of bytes, where each byte represents a single character. 
This approach works well with the use of single-byte character encodings like ASCII, however, 
with Unicode, and the need to handle multibyte characters and extended grapheme clusters,
this approach can lead to problems. 
For example, when iterating through a string using a byte-based approach, it might incorrectly 
split multibyte characters into separate entities, causing data corruption.
This extends to grapheme clusters, which should also be treated as one indivisible unit.
To detect extended grapheme clusters and determine string length accurately, 
the use of a Unicode library is advisable.



Normalisation

To address the variability in character encoding and representation, Unicode 
offers normalisation forms, including NFD, NFC, NFKD, and NFKC. These 
normalisation forms aim to standardise the representation of characters by 
either decomposing them into their smallest possible pieces (NFD), 
combining them into pre-composed forms (NFC), or replacing visual variants 
with default ones (NFKD and NFKC).

Normalisation is essential before 
comparing strings or searching for 
substrings to ensure consistent and 
accurate text processing.

By leveraging the Unicode standard and 
adhering to normalisation practices, we 
can mitigate the issues associated with 
variable-length character encoding and 
promote accurate representation of text 
data in digital preservation efforts.



Strategies

• Advocating for the adoption of the Unicode standard to 
ensure consistent encoding and representation of diverse 
language characters.

• Collaborating with technology developers to improve support 
for diacritics and non-Latin scripts in digital platforms and 
tools.

• Providing training and resources to digital archivists and 
librarians, and information professionals on best practices for 
handling diverse language characters in digital content.

• Implementing quality assurance measures and testing 
protocols to identify and address rendering issues or 
compatibility issues across digital environments.



Conclusion

The preservation of diverse language characters in digital content is not 
solely a technical issue, but a matter of cultural significance and social 
equity.

By leveraging the Unicode standard and understanding the 
complexities of character encoding and normalisation forms, we can 
overcome barriers to language representation and ensure that all 
languages and scripts are accurately represented and preserved in 
digital content.

With that, we promote linguistic diversity and cultural inclusivity in 
digital preservation efforts, but also further afield.



Resources




