
FEBRUARY 2023

Joanna White
Knowledge and Collections Developer

BFI NATIONAL ARCHIVE
DPX RAWCOOKED WORKFLOW

Hello, I’m Joanna White and I’m the Knowledge and Collections Developer at the
BFI National Archive. I’m excited to present our DPX workflows to you today, using
open source software RAWcooked. Thank you for this opportunity to present!

The BFI National Archive began the preservation of 3 peta-bytes of legacy DPX film
scans held within its collection in 2019. These scans mostly originated on LTO tape
and were generated during the Heritage 2022 Unlocking Film Heritage project.

To give you a sense of the scale of this project, the BFI’s Britain on Film map
shows footage gathered from across the country. Zooming in on London
specifically you can see the many thousands of examples of film available to view
for free from the BFI Player website.

“DIGITAL PRESERVATION USING A LOSSLESS, OPEN,
STANDARDS-BASED FORMAT THAT IS INCREASINGLY
ADOPTED BY PUBLIC ARCHIVES AROUND THE WORLD.”
HERITAGE 2022 FILM PRESERVATION PROJECT

The project’s aim was ‘digital preservation using a lossless, open, standards-based
format that is increasingly adopted by public archives around the world.’

RAWcooked was chosen to encode the DPX sequences to FFV1 video codec in a
Matroska container. RAWcooked is created by Media Area, a group of developer
archivists led by Jérôme Martinez. This group produce audiovisual tools with
preservation interests at their heart.

This software is free to use with a default series of encoding ‘flavours’, including 8-
bit and 10-bit RGB DPX. Here at the BFI National Archive we have purchased a
few additional encoding flavours including RGB 12-bit and 16-bit, Luma Y 10-bit
and 16-bit.

I should add, our DPX workflows do not process audio, but this software can do
that very well. Our audio files associated with a DPX sequence are independently
processed and ingested so I’m afraid we can’t reflect on this aspect of
RAWcooked in this presentation.

https://mediaarea.net/RAWcooked

The FFV1 codec offers amazing features for audiovisual preservation including
large file size reductions, frame slices that improve multithreading playback
performance, and sliceCRCs, or cyclic redundancy checks, that make it possible
for a decoder to detect bitstream errors.

https://datatracker.ietf.org/doc/rfc9043/

FFV1 is the codec, and we use the Matroska wrapper to contain the FFV1 video file
and attachments generated by RAWcooked. Both FFV1 and Matroska are proven,
open and standards-based solutions created by a talented global audiovisual
archiving community.

https://matroska.org/

For those unfamiliar with film, a digitised DPX image sequence has 1 high
resolution image for every film’s frame, so a 90 minute film at 24fps has almost
130,000 DPX files within it. This can create a sequences as large as 10TB if it’s
been scanned for 4K distribution. RAWcooked’s lossless compression to FFV1 can
reduce that overall file size by between one and two thirds on average, which not
only saves money on storage solutions but reduces demand on networks. This is
most noticeable when moving files to long-term data tape storage taking less time
to write to, and retrieve from, tape libraries.

Let’s quickly see how easily RAWcooked converts a single image sequence into an
FFV1 video stream, using the ‘all’ command. The ‘all’ command combines several
other important preservation commands, ensuring the highest standard of image
sequence encoding. It can be used to transcode an image sequence to FFV1
Matroska, and it can be used to return an FFV1 Matroska back to an image
sequence. A bit by bit perfect copy of the original, confirmed in the last statement
‘reversibility was checked, no issues detected’.

As we have thousands of sequences to process within a tight project deadline, it
was essential that bash shell scripts were written to automate the workflows
around the clock. Our workflows started in 2019 with two bash scripts written by
Head of Data and Digital Preservation, Stephen McConnachie.

These transcoding scripts maximised our transcoding throughputs by using open
source software GNU Parallel which allows us to run transcodes in parallel, with
transcoding processes spread efficiently across the threads of our transcoding
server.

dpx_check_script.sh

DPX SCRIPTS TODAY
I joined the BFI in 2019 and spent the next two years evolving Stephen’s scripts
into four bash scripts, and two python scripts. These essentially manage the whole
process of DPX assessment, file size management, transcoding to FFv1,
conformance checking and deletion of the DPX sequence. There have been very
many adjustments to our scripts during this development period, and in turn this
has informed many developments within the RAWcooked software itself. The DPX
files we have encountered in the project have really tested and expanded
RAWcook’s capabilities - and coined the term ‘wild west DPX’ for our legacy
collections.

 
Most recently this workflow has been expanded to include 4K processing for our in
house scanners, and we’re currently working through huge folders full of DPX data
which has seen a slowing in throughput but essential size reductions.

In the spirit of the open-source software and the community that this workflow is
inspired by, we feel it’s really important to share the scripts in full via our Data and
Digital Preservation GitHub pages, which you can see here. You can find out more
about all the code used in this workflow here, with detailed descriptions of how
each script operates. This is our live code, so any changes made on a day to day
basis are reflected immediately in this repository.

We also have recently put together a RAWcooked cheat sheet which details our
approaches for optimising our automation processes. Including using GNU parallel
for parallisation of transcodes. It also covers the importance of capturing your logs
for review in automated transcode workflows.

So to give an overview of the workflow I thought it best if we step through it from a
DPX sequences perspective.

I’ve broken the workflow into four stages, the DPX assessments phase, the
RAWcooked encoding of the DPX into an FFV1 Matroska, the encode log and
Matroska file checks, and finally the RAWcooked checks that trigger DPX deletion.

- DPX sequence placed into ‘dpx_to_assess’ folder

- The first DPX in the sequence is identified

- Mediaconch policy validation checks against DPX

The assessment starts when a DPX sequence is manually placed into the
dpx_to_assess folder. This should be the only manual intervention in these
workflow scripts. Within that DPX sequence folder the first DPX is identified. This
DPX is used to check a few following steps. Firstly, the Mediaconch DPX policy
conformance check using Media Area’s MediaConch policy checking software.

As demonstrated in Michael and Stephen’s presentation, a Mediaconch policy will
apply certain rules to the assessment of a supplied file, where all rule are found to
be true a policy is passed. This is our DPX Mediaconch policy which is kept up to
date in our open GitHub repository.

It checks for obstacles that will prevent RAWcooked encoding, such as if there are
two image elements in a DPX (caused sometimes by alpha channel inclusion), and
if the DPX file conforms to our current RAWcooked license requirements.

- DPX sequence placed into ‘dpx_to_assess’ folder

- The first DPX in the sequence is identified

- Mediaconch policy validation checks against DPX

- DPX metadata extracted to script

- Total DPX sequence size extracted to script

- The script then picks a path for the sequence based on colour metadata and size

- The metadata is supplied to the splitting script which checks if splits are required

Next the scripts extract DPX metadata into the script, and for this we use
MediaArea’s MediaInfo tool. This DPX metadata is also written into a text file which
is stored as an attachment within the finished MKV file’s wrapper.

The total DPX sequence size is also extracted. The script checks if the sequence
should be RAWcooked or TAR wrapped, and identifies if a files is Luma Y, RGB, 2K
or 4K. This data is supplied next to the splitting script which decides if any splitting
actions are required.

The Python splitting scripts are complicated and manage to many complexities
encountered when replicating and sharing massive DPX sequences across
multiple, identical folders. If you’d like to know more about how they function
please visit our open source GitHub repository, link to follow.

This table shows the splitting size choices applied in the splitting script code. If a
file is RAWcooked RGB 2K (the left column), then a DPX sequence can be up to
1.3TB in size before it requires splitting. This is because a 2K RGB sequence will
reduce by at least one third when in FFV1 form. This isn’t the case for RAWcooked
2K Luma Y or RAWcooked 4K items where the reductions are less predictable, so
splits have to happen at the 1TB limit. If a file is over 1TB or 1.3TB then the whole
DPX sequence will be split and the DPX files will be moved into identical folders
with a filename additional part whole increase to account for the folder addition.
So far the scripts can manage files up to 6TB in size, but may require further
adjustments if 10TB sequences appear for RAWcooked processing.

Here’s a quick look at an example metadata extraction from a DPX file within a
sequence, using MediaArea’s MediaInfo software. This is saved into the
compressed MKV file as an attachment, and can be extracted from the file at any
time using open source software such as MKVtoolnix.

- The DPX sequences are moved to ‘dpx_to_cook’ folder

- The scripts check if the sequence as a ‘retry’ log entry

- If no, then the standard RAWcook encoding command launches

- If yes, then the ‘output-version 2’ command launches

So to the encoding phase. The DPX sequences once split successfully are moved
into ‘dpx_to_cook’ under automation.

The scripts check if the sequence has a failed a previous encoding pass attempt
with a ‘retry’ entry in a special retry log.

- If no, then the standard RAWcooked command launches with ‘—all’ command

- If yes, this is a retry encoding then the all command has an additional ‘output
version 2’ flag. We need this retry command to manage DPX sequences that have
extra data in the DPX padding, where usually zeros are found. It ensures this extra
data is safely stored in a RAWcooked reversibility attachment so the sequence can
be perfectly rebuilt from the FFV1.

rawcooked -n/y --all --no-accept-gaps -s 5281680 “dpx_sequence/” -o “file.mkv”
 &>> “path_to_log/file.mkv.log”

rawcooked -n/y --all --no-accept-gaps -s 5281680 -output-version 2 “dpx_sequence/” -o “file.mkv”  
 &>> “path_to_log/file.mkv.log”

FIRST COMMAND PASS

SECOND COMMAND PASS

These are the two RAWcooked command currently in use. As you can see these
are identical except one has an ‘output-version 2’ option.

rawcooked: command launched the RAWcooked software

-n / -y:	 answer no or yes to any enquiries that RAWcooked/FFmpeg asks 
- -all: the excellent preservation command new to RAWcooked v21. 
- -no-accept-gaps: a flag we use to stop gaps passing through without failing the
encoding when the ‘-n’ flag is active. Essential in our new 4K workflows, but where
we’re working with legacy DPX files from LTO tape we leave the flag ‘-y’ to allow

gaps to pass through.

-s 5281680: sets the maximum attachment size limit up to 5MB. The default in the
code is 1MB and too small for our attachments. 
- -output-version 2: in the second command ensures that files with large padding
data are managed. 
‘dpx_sequence’ -o ‘file.mkv’: is the input sequence, and output file name for the
new Matroska 
&>> ‘path_to_log/file.mkv.log’: ampersand and two right arrows ensures all
console outputs are saved into a log file, listed in the path following. This captures

- The DPX sequences are moved to ‘dpx_to_cook’ folder

- The scripts check if the sequence as a ‘retry’ log entry

- If no, then the standard RAWcook encoding command launches

- If yes, then the ‘output-version 2’ command launches

- FFV1 Matroska files are created and placed into ‘mkv_cooked’ folder

- Logs of the transcode are also captured to the ‘mkv_cooked’ folder

The encoding begins and an FFV1 Matroska file is created and placed into
‘mkv_cooked’ folder. Logs are also captured to the ‘mkv_cooked’ folder. These
logs contain RAWcooked and FFmpeg messages about the transcoding process.

This is an example log for a standard DPX transcode. The first outputs you see are
the RAWcooked analysis outputs. When it gets to ‘track 1’ FFmpeg is beginning to
run. Here you can see the file information and metadata attachments you’re adding
into the MKV file. The next steps are the FFmpeg transcoding logs. You then have
a repeated RAWcooked analysis output which culminates in the statement
‘Reversibility was checked, no issue detected.’

Just to illustrate, we don’t always get perfect transcodes, sometimes some errors
crop up, and they carry the prefix ‘Error:’ or ‘Warning’. Errors will generally stop a
transcode proceeding, but some warnings let you know of an issue perhaps with
DPX metadata, but may not stop encoding or reversibility of your sequence.

- The post-encoding checks begin against the FFV1 Matroska file and its logs

- The FFV1 Matroska is checked against a Mediaconch policy

Following transcoding, there are a series of automated checks that occur now to
ensure a file has successfully transcoded. The Matroska file is checked against an
FFV1 Matroska Mediaconch policy.

Again you can view this policy at our open source repository, where it shows all our
necessary checks against the MKV file. It checks that the RAWcooked reversibility
data is attached, checks that the file is lossless, has all the slice CRCs and error
detection present, and that the duration field is present. If it’s missing it’s an
indication that a file can be truncated during creation.

- The post-encoding checks begin against the FFV1 Matroska file and its log

- The FFV1 Matroska is checked against a Mediaconch policy

- The MKV file size is checked to be under 1TB

- The log of each FFV1 Matroska is checked for ‘Warning’ or ‘Error’ messages

- Successful transcodes have their DPX sequences moved to ‘dpx_completed’ folder and
the FFV1 Matroska is moved to ‘check’ folder for RAWcooked checking

- Failed transcodes have their DPX sequences left in ‘dpx_to_cook’ folder for repeat
encoding and the FFV1 Matroska is automatically deleted to make storage space

Next the MKV file size is checked to ensure it’s under 1TB for our DPI ingest. Then
those logs are assessed for any error or warning messages. If a specific warning is
found to indicate that the transcode failed because of large padding data, then a
log output is made to control which RAWcooked encoding pass is made next.

Successful transcoded MKV files are moved to the ‘check’ folder for the next stage
RAWcooked checks. The DPX sequence folder is moved to a ‘dpx_completed’
folder to stop it being lined up for repeated encoding. The log is moved to a ‘log’
storage folder and we keep this file.

If an FFV1 failed the Mediaconch policy or Errors indicate a failed encoding
attempt then the DPX sequence is left in place in ‘dpx_to_cook’ for a repeated
attempt, the FFV1 Matroska is automatically deleted, and the transcode log is
saved in ‘log’ storage, but prepended ‘Failed’.

- FFV1 Matroska that passed the previous checks are tested by RAWcooked --check

- The check command ‘rawcooked --check’ checks a file can be decoded safely

- If it passes, the DPX sequence is deleted and the FFV1 Matroska is moved to the BFI
Digital Preservation Infrastructure (DPI) ingest path

- If it fails, the DPX sequence is returned to ‘dpx_to_cook’ for repeat encoding attempts
and the FFV1 Matroska is immediately deleted

- Successful FFV1 Matroskas that are ingested to DPI have an MP4 access copy made for
easy file review. 4K FFV1 Matroska files can’t be reviewed smoothly yet

Finally we have the deletion checks. This stage was added recently to run a
RAWcooked ‘- -check’ command test against the file, as we previously kept both
the DPX and the MKV files on storage until the MKV had been ingested to our tape
library. Now we’re handling so much 4K material we quickly fill storage, so we
added a RAWcooked check to allow for earlier deletion of the DPX sequence.

This checks that the FFV1 Matroska can be correctly decoded, ensuring that a
decoded file matches its original content by checking the checksum and file
information stored in RAWcooked’s reversibility data, stored in the MKV.

If a file passes this test then the DPX sequence is deleted and the MKV file is
moved to our Digital Preservation Infrastructure ingest folder.

If a file doesn’t pass this ‘check’ then the DPX sequence is returned to the
‘dpx_to_cook’ folder for repeated encoding, and the FFV1 Matroska is deleted.

Once ingested the FFV1 Matroska has an MP4 access copy made for easier
viewing of the compressed content by our technical teams. 4K MKV files can’t be
played easily by any of our workstations at this time, so an MP4 transcode
provides a quick an easy method for reviewing previously unseen DPX data in
storage.

So that’s a swift overview. I thought you’d like to see some of the RAWcooked
FFV1 Matroska files we’ve ingested to our Digital Preservation Infrastructure. They
include films from the Socialism on Film from the Educational and Television Films
collection.

Many of these items have colourful optical audio tracks making them beautiful to
look at and technically fascinating.

Before RAWcooked encoding we would TAR wrap all DPX sequences, so the
ability to review our RAW DPX in this way is one if the best features provided by
using RAWcooked.

- Predict using RAWcooked will save us 1600 TB of total storage space

PROJECT REVIEW

- Easing the burden of future tape migrations

- Savings in the region of £45,000 for this Heritage 2022 project

- Reviewed film scan specifications for suppliers to use RAWcooked

- BFI sponsorship of RAWcooked development - optimisation of code for 4K

- Financial support for long-term sustainability of open source software

- Long-term plan conversion of code from shell to Apache Airflow pipeline in time

- Investigate use of Python bindings for Media Area tools

So to review how successful this workflow has been?
- We predict that using RAWcooked for this Heritage 2022 project will save us a
total of 1600 TB of storage space.
- By reducing the content’s storage footprint by more than half we ease the
burden of future tape migrations.
- Our projected savings will be in the region of £45,000 for this project alone.
- We recently undertook a review of our film scan specifications, using these
findings to better inform our suppliers of safe parameters for successful
RAWcooked encoding. This also resulted in the creation of a DPX Mediaconch
policy which is available to view in MediaArea’s public policies web page, and
the creation of a sub-licensing feature in RAWcooked allowing us to share our
license with our DPX suppliers allowing them the option to create and supply
FFV1 Matroska files directly to us, rather than DPX sequences.
- These open source tools are not expensive to implement, but open source
shouldn’t be thought of as free. Users of these tools need to work together to
establish financial support for their long-term sustainability.
- To that end the BFI has sponsored several features and is currently investing in
developments to help optimise RAWcooked for our 4K workflows.

 
In the future:

- I’d like to see redevelopment of this workflow so it is managed within an Apache
Airflow pipeline. This will allow for greater optimisation as transcoding
processes can be shared across multiple ‘node’ servers. This will also allow
realtime monitoring of operating tasks from a web user interface. At present
fault finding can be a series of log chases across all the different server shares,
and it can take some time!
- Finally I’d like to investigate the use of MediaArea’s python bindings provided
for MediaInfo and MediaConch software.

THANK YOU!

DPX workflow code base:
github.com/bfidatadigipres/dpx_encoding/

RAWcooked:
mediaarea.net/RAWcooked

RAWcooked manual page: man rawcooked
RAWcooked help page: rawcooked --help

Britain on Film:
https://player.bfi.org.uk/britain-on-film

BFI National Archive:
https://www.bfi.org.uk/bfi-national-archive

Joanna White
@digitensions
joanna.white@bfi.org.uk

RAWcooked, FFV1 and Matroska offer unique and exciting solutions for long-term
audiovisual preservation, providing much needed format stability and financial
savings. I’d like to thank Jérôme Martinez for his patience and support during the
development of these scripts, and thank the wider community whose blogs,
technical guides and cheat sheets continue to aid us in the creation and
maintenance of our workflows. Thank you.

