

Science and Technology Facilities Council

Investigating the impact of policy on energy consumption in the Energy Data Centre

Catherine Jones, Energy Research Unit, Technology Department, UKRI/STFC DPC Nov 2021

Energy Data Centre: introduction

- Part of the UK Energy Research Centre, funded by UKRI
- UKERC vision: Independent whole systems research for a sustainable energy future
- EDC collects & disseminates: research data; publications and metadata on energy projects
- Infrastructure:

Science and

Technology

Facilities Council

- Small team: 3 FTEs
- Internal systems

Internal Project

• How does our policy affect our energy usage?

Reviewed service aspirations

DPC RAM & TNA DiAGRAM (risk scenarios)

Measured energy usage for routine jobs

- Dell servers: IPMI tool (standard for sensor data)
- Analysed the outputs did observe changes but very small numbers
- Worked out greenhouse gas emissions for the service
- Also ran new URL checking job

All contributions make a small difference and put together makes a bigger difference.

This is equivalent to average car driving **3280** miles a year

Routine jobs

- Ingest and data quality activities (known times)
- Measured baseline when jobs weren't running.
- Able to measure changes in power consumption very small numbers
- IPMI provides averages in steps: better data quality on jobs that took longer
- Highlighted some jobs which run automatically but don't always do anything if no new records
- Regular URL checking now in place as a result
- Accidentally left the energy data gathering going so now have 8 months worth of data!

CEDA Component – research data

Not very much energy used in this part of the service – as expected. Would increase as data volumes increase. Big computing (cloud/virtual) is more energy efficient than a couple of machines for a particular service

Calculated by working out proportion of storage & compute and knowing total energy consumption on JASMIN. Figures & calculations provided by CEDA staff

Risk benefit discussion

6

Conclusions

- Measured energy consumption of routine jobs (with caveats)
- Some new preservation risk mitigations won't increase energy consumption
- Demonstrated using large shared resources is more energy efficient (as expected)
- EDC actions:
 - Reviewed regular jobs
 - Investigate checksums processes on low risk objects
 - Investigate greening the web application
 - Consider risk appetite for the infrastructure

https://mobile-efficiency-index.com/en/

- Peter Holt, Sarah James & Alan Ruddell from the Energy Research Unit, Technology Department, UKRI/STFC
- Sam Pepler, Andrew Harwood & Matt Pritchard, Centre for Environmental Data Analytics based at UKRI/STFC
- Chris Dean from UKRI/STFC Digital Infrastructure staff
- Jen Mitcham & Paul Wheatley from DPC for advice & sense checking
- David Underdown from TNA for advice on DiAGRAM

All contributions make a small difference and put together makes a bigger difference.