
Proving a Problem is Solved

A developers perspective on
requirements testing.

INTRODUCTION

Your presenter

A quick overview

17/12/2013 2

A Little About Me

Carl Wilson
Software Configuration Manager
Open Planets Foundation

Email : carl@openplanetsfoundation.org

Skype : carl.f.wilson

GitHub : carlwilson

Twitter : @openplanets

Google+ : carl@openplanetsfoundation.org

17/12/2013 3

mailto:carl@openplanetsfoundation.org
mailto:carl@openplanetsfoundation.org

What I Do…..

• The Open Planets Foundation technical dept.

• OPF Events

• OPF Project work

 SPRUCE

 SCAPE

• My main goal is to encourage and facilitate
community development of high quality
digital preservation tools.

17/12/2013 4

Overview

• Defining Requirements?
 Specifying software systems.

 What makes a good requirement?

• Software Development Practices
 Who’d win a fight? Agile vs. Waterfall methodologies.

 Thinking testability at every step.

 Open communication and simplicity.

• Thought into Action?
 Tools and practices to test requirements.

17/12/2013 5

DEFINING REQUIREMENTS

Specifying software systems.

Requirements, what are they good for?

Knowing when you’re done AKA testing your requirements.

17/12/2013 6

Why Specify Requirements?

• The Bottom Line
Requirements are the contract between the user and the
developer.

• When Procuring a Solution
Requirements provide some of the fine details of the contract
between procurer and supplier.

• In Theory…..
 The customer knows they got what they wanted.

 The supplier knows when they’ve delivered.

 We get nice reporting metrics as the project progresses.

17/12/2013 7

The 9 Virtues of Requirements

• So Wikipedia says, edited highlights ;) :

Unitary (Cohesive) The requirement addresses one and only one thing.
Complete The requirement is fully stated in one place……
Consistent The requirement does not contradict any other requirement….
Non-Conjugated The requirement is atomic, i.e., it does not contain conjunctions….
Traceable The requirement meets all or part of a business need……
Current The requirement has not been made obsolete over time.
Unambiguous The requirement is concisely stated…..
Specify Importance The requirement must specify a level of importance….
Verifiable The implementation of the requirement can be determined….

17/12/2013 8

Traceable and Verifiable

• I’d like to champion two attributes:

 Traceable

 Verifiable

• And the greatest of these is VERIFIABLE

• A truly verifiable requirement isn’t :
Ambiguous, conjugated (un-atomic), inconsistent
(contradicts another test), though static analysis may
be required to ensure completeness

17/12/2013 9

SOFTWARE DEVELOPMENT
PRACTISES

Who’d win a fight: Agile vs. Waterfall methodologies?

A few first hand observations on testing and development.

Simplicity, openness and communication.

17/12/2013 10

Agile vs. Waterfall Methods

• Not trying to settle the great debate in
software development.

• It’s possible to treat methodologies as toolkits.

• The real procurement issues:

 Specifying what’s to be done.

 Proving it’s done.

• Between the two lies complexity and
miscommunication.

17/12/2013 11

Before I Started in IT….

• My first experience of poorly communicated
of requirements.

• Who defines when a stone’s large?

 The supplier (my boss): >= a tennis ball

 The customer: >= a golf ball

• My first experience of working evenings and
weekends re-picking stones over 8 acres….

17/12/2013 12

Early days in IT

• Organisation in hurry to implement feature.

• The main test developer on leave.

• Feature developer green and keen on golf.

• So just run the dev tests, it’s a minor change.

• Result: back from the golf course early and
working late to remove 150,000 duplicate
orders from the live system

17/12/2013 13

Coil Plate Mill

Working for British Steel / Corus circa 1999

Scene of my most spectacular real world test failure

17/12/2013 14

Where Waterfall Meets Agile

• Corus a waterfall project over 2 years, BUT :

 Replacing and enhancing an existing system, one
component at a time.

 Access to business owner, domain experts
(metallurgists) in the same office, and end users
on site, a two mile car journey away.

 Open and accessible communication and feedback
opportunities.

17/12/2013 15

Real Testable Specifications

• Pension Benchmarking & Attribution

• Requirements Provided by:

 Financial Analysts

 Delivered as a set of spreadsheets

 Reserved another set for testing

 When software gave the same answers as the
spreadsheet, your done

• Client site deployment was another story

17/12/2013 16

What Have I Learned?

• Developing software is the process taking an idea and
making it real.

• Clear communication of ideas is a pre-requisite.

• The feedback loop between users, analysts, testers,
and developers should be open, honest and regular
(think constant).

• Decompose the problem into discrete testable
elements.

• Think testability from the ground up.

• Delivering working software shouldn’t be a big deal.

17/12/2013 17

THOUGHT INTO ACTION?

Building testing into the development process.

Connecting developer and acceptance tests.

Automated testing and continuous delivery.

17/12/2013 18

Who’s the Driver?

• Test Driven Development
Unit Tests : Build the thing right

 Tools and processes for developers

 Write a failing test.

 Write the code to make the test pass, and repeat

• Behaviour Driven Development
Acceptance Tests : Build the RIGHT THING

 Tools and processes for teams, based on TDD

 Define the system in terms of required behaviour

 Link these specifications to developer tests

17/12/2013 19

Cucumber: A BDD Tool

• Designed specifically to help business
stakeholders get involved in writing acceptance
tests.

• Provides the sandwich filling between
Acceptance Tests and Unit Tests, in a variety of
mixable flavours:
 Integration tests

 Browser testing

 Smoke tests

 And so on….

17/12/2013 20

Cucumber: Encouraging
Communication

• Facilitates the discovery and use of a
ubiquitous language for project teams.

• Tests written collaboratively by the team,
encouraging clear communication.

• Cucumber tests written in a medium and
language that business stakeholders
understand.

• Cucumber tests interact directly with the
code.

17/12/2013 21

Cucumber: Managing Complexity

• Decompose the system into FEATURES, a low
level unit of functionality
e.g. customer registration

• A feature is made up of TESTABLE scenarios,
providing detailed examples of desired behaviour
as STEPS:
 GIVEN some condition

 WHEN some action / criteria

 THEN desired result

 AND further result…..

17/12/2013 22

Cucumber: A Little Detail

• Cucumber test cases are called scenarios,
scenarios are made up of steps.

• The business-facing parts of the test suite are
grouped into features and stored in feature
files.

• Feature file syntax known as Gherkin.

• Below the hood step definitions translate
business-facing steps into code.

17/12/2013 23

Cucumber: Testing Stack

17/12/2013 24

Project

Features

Scenarios

Steps

Step Definitions

Support Code

Automation Library

System

Business Facing

Technology Facing

Putting it all together

• Continuous Integration
 Automated build and testing of project

 Ideally at every code change

 Can run any kind of automated test

 Up to date results should always be visible to the
whole team.

• Continuous Delivery
 Delivering a working system as BAU

 Start with a test system

 It’s possible to deploy live quickly and often

17/12/2013 25

Footnote: Testing Creatively

• Good testing is NOT easy.

• Adding automated tests to existing code is
challenging, refactoring without tests to
ensure nothing’s broken.

• Think creatively, black box testing is a good
place to start with existing codebases.

• Think creatively, Wizard of Oz testing…..

17/12/2013 26

Final Thoughts

• A bias towards Agile as it encourages:
 Communication

 Rapid Feedback

• Specifying systems to a truly testable level of
detail is HARD.

• But if YOU, the customer, don’t know how to
verify you’ve received what you asked for then
you’re almost certain to miscommunicate the
idea.

17/12/2013 27

Licensing

This work by Open Planets Foundation is licensed under
a Creative Commons Attribution 3.0 Unported License.

17/12/2013 28

http://openplanetsfoundation.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

17/12/2013 29

17/12/2013 30

17/12/2013 31

17/12/2013 32

17/12/2013 33

17/12/2013 34

17/12/2013 35

17/12/2013 36

