

Digital Preservation and long term access:

challenges, opportunities approaches, tools

...and a couple of words about the DPC

William Kilbride william@dpconline.org

- •What *are* the challenges?
- •What are not?

- •What is the solution?
- •What is not?

Digital preservation typically makes bleak reading ...

- Let's go back to first principles ...
- Digital data has value. It is an asset.
- It has potential and creates new opportunities.
- Use gives rise to direct and indirect outcomes.
- ...but...
- Deployment depends on software, hardware and people.
- Software, hardware and people change.
- ...therefore...
- Access is not guaranteed without (some) action
- Value, opportunity, impact not guaranteed
- Potential outcomes ie health or research lost

Digital preservation is not about 'data':

Digital preservation is not about 'access':

Digital preservation is not about 'risk':

it's about people and opportunity

Digital preservation is not about 'data':

Digital preservation is not about 'access':

Digital preservation is not about 'risk':

Digital preservation is about:

Healthier -Wealthier Safer - Smarter -Greener

people and communities

Access depends on the configuration of hardware and software and the capacity of the operator.

Documentation can capture these configurations

Emulation or Migration can create the conditions where access is possible.

Technology continues to change creating the conditions for obsolescence.

Technology watch services can give advanced notice of obsolescence.

Plan for the long term early not late.

Self-preserving technology www.dpconline.org

Storage media have a short life and storage devices are subject to obsolescence.

Storage media can be refreshed and can self-check.

Storage densities continue to improve offering greater capacity at less cost.

(storage is cheap – discovery is expensive) www.dpconline.org

Digital preservation systems are subject to the same obsolescence as the objects they safeguard.

Systems can be modular and transparent.

Fitness for purpose can be monitored through time.

Recursion of process www.dpconline.org

Digital resources can be altered, corrupted or deleted without obvious detection.

Signatures and wrappers can safeguard authenticity

Security can control access.

Copies are perfect replicas with no degradation.

MHM Government

Challenge 6

Digital resources are intolerant of gaps in preservation.

Ongoing risk management can provide monitoring.

There are significant economies of scale

Many processes can be automated.

That's why we're here...

Leadership
Training
Experience
Learning by doing

Key Approaches

1. Migration

Changing the format of a file to ensure the information content can be read

2. Emulation

Intervening in the operating system to ensure that old software can function so that information content can be rendered

3. Hardware preservation

Maintaining access to data and processes by maintaining the physical computing environment including hardware and peripherals.

4. Exhumation

Maintaining access to an execution environment or software services so that processes can be re-run with new data www.dpconline.org

Three ways to think about Digital Preservation

- 1. A three legged stool
- 2. Digital lifecycles
- 3. Archival information systems

Digital lifecycles

Think of a research question
Gather some relevant data
Process the data
Refine the data
Draw some conclusions
Publish your findings and data
Start again

Reference Model for an Open Archival Information System 'OAIS'

Disseminate

Submit

Fig. 1. Major functions of the OAIS Reference Model from Consultative Committee for Space Data Systems (CCSDS), <u>CCSDS</u> 650.0-W-1, <u>Producer-Archive Interface Methodology Abstract Standard</u>. (OAIS). White Book. Issue 1. Draft Recommendation for Space Data System Standards.

Picture from DLib

Courtesy NASA/JPL-Caltech

Consultative Committee for Space Data Systems

Inadvertently comparing yourself to NASA ...

Scalability? It scales up really well ...

some tools

Knowing what you've got
PRONOM+DROID
Planning what to do with it
PLATO
Putting it somewhere safe
LOCKSS

file formats and their characteristics

Corporation, primarily for use in scanning and desk-top publishing. When Adobe Systems Incorporated purchased Aldus in 1994, they acquired the rights to the TIFF format and have maintained it since then. TIFF files comprise three sections: an Image File Header (IFH), an Image F Directory (IFD), and the image data. TIFF files can contain multiple images (multi-page TIFF), and earnage has a separate IFD. The IFH always appears at the beginning of the file, and is immediately followed by a pointer to the first IFD. The IFD contains metadata which describes the associated image, stored as a series of tags. The IFD also contains a pointer to the actual image data. TIFF 3.0 supports colour depths from 1 bit to 24 bit (e.g. monochrome to true colour), and a range of

compression types (RLF, and CCITT Group 3 and Group 4)

DROID: Search and report on files from an entire network

Identify files by extension
Identify files by contents
Report errors and concerns
Provides 'checksum' signatures

Part of a preservation architecture

PLATO – digital preservation planning tool

From the PLANETS suite of tools Planning a shared function Typically ad hoc

PLATO offers three things:

- Methodology for planning
- Online planning toolkit
- Library of plans

Team Digital Preservation and the Arctic Mountain Adventure

LOCKSS – Lots Of Copies Keeps Stuff Safe

Preservation machines

Box 1

Box 2

No match

Box 3

No match

Box 4

Box 4

No Match

Box 4

Box 4

No Match

Box 4

No Match

Box 4

No Match

Box 4

No Mat

Cooperative replication
Dark archive
Self-fixing

Originally E-journals for libraries Post cancellation access

Now also 'Private LOCKSS Networks' Eg MetaArchive

http://lockss.stanford.edu/

http://www.lockssalliance.ac.uk/

http://www.metaarchive.org/

Part of a preservation architecture

www.dpconline.org

PRONOM and DROID PLATO LOCKSS

= Parts of a preservation architecture

Not just at the end of the process but all the way through creation

Many more tools ...

Oh and ... the Digital Preservation Coalition

...to make our digital memory accessible tomorrow ...

Enabling Agenda-setting

UNIVERSITY OF

CAMBRIDGE

□ DCC

A

The NATIONAL

ARCHIVES

of SCOTLAND

NATURAL

HISTORY MUSEUM

National Library

Public Record Office

of Northern Ireland

University of St Andrews

Oxford Archaeology

VING'S *College*

PORTICO

... first and foremost a coalition...

Shared challenge Cross-sector Cross-discipline Policy and practice

... EnablingDP HandbookEmail listsLeadership ProgrammeWhat's newWorkshopsConferencesTechnology watch reports

... agenda setting

Digital Britain
Archives for the 21stCentury
Electronic Legal Deposit
Heritage Science Strategy
Preservation Exceptions

Web Archiving and Preservation Task Force

Join us!

Associate members Full members Personal members

Next – archive and information schools

Digital Preservation in byte sized chunks:

why we should be careful what we wish for

biographical, idiosyncratic observations

William Kilbride william@dpconline.org